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Foreword
Controlling the operating behaviour of electrical machines – transformers, alternators, motors, etc.
– is a major concern for EDF and for electrical machine manufacturers and operators in general.

These devices must meet precise specifications in normal operation when they are first com-
missioned. But the equipment changes over its lifetime and the operating constraints can change
(the Grid Code in 2017, for example). Thus, it is often useful to be able to assess their behaviour
under abnormal conditions (new specifications) or exceptional conditions (faults).

These concerns apply to a very wide range of “equipment”:
• cylindrical rotor generators;

• salient pole rotor generators;

• induction motors;

• transformers;

• diagnostic instruments;

• electromagnetic compatibility;

• effects of the magnetic field on the human body, etc.

For a long time, functional analysis was essentially based on tests and calculations applied
to simple geometries. Today, in addition, electromagnetic modelling provides a powerful means
of investigation to better understand the problems encountered. The modelling approach first
consists in defining a set of equations to locally describe the electromagnetic field. These are
based on Maxwell’s equations coupled with laws describing the behaviour of materials. These
equations are then formatted so that proven techniques can be applied to solve them. Finally,
the results are processed so that they can be expressed in terms of familiar electrical engineering
variables.

The Lille Laboratory of Electrical Engineering and Power Electronics (L2EP) and the ERMES
department (formerly THEMIS) of EDF R&D are jointly developing code_Carmel. This is a
software package for three-dimensional calculation of electromagnetic fields based on the finite
element method. It is particularly suited to the study of electrical machines under transient
conditions (in its time-based version) or in the steady state (in its multi-harmonic version).

Hence, more particularly, this document aims to summarise the spectral approaches dedicated
to the specific resolution of transient electromagnetism problems, with motion and with random
parameters. In particular, it formalises general expressions for the spectral representation of the
time dimension by considering not only a harmonic basis (suited to periodic problems) but also a
polynomial basis (for the processing of non-periodic variables). In addition, it allows for general
application of the Spectral Stochastic Finite Element Method (SSFEM) to take into account
uncertainties in the constitutive relations for linear magnetoharmonic problems with motion.

This document provides a detailed presentation of the equations processed by the code_Carmel
software and how to solve them using a finite element method. This is not a textbook on electro-
magnetism or the finite element method. It assumes basic knowledge of electromagnetic phenom-
ena and numerical methods in general.

Some notational conventions should be specified by way of introduction. A vector field is set in
bold type. For example, B represents the flux density vector field throughout the domain under
study.
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Introduction
To study the internal behaviour of the electromagnetic structure of an electrical device, we have
used numerical modelling [Vérité et al 2007]. The modelling consists in establishing a mathematical
structure that describes the physical phenomena. The mathematical model is formed of Maxwell’s
equations, which include Ampère’s circuital law, Faraday’s law, and Gauss’s laws for magnetism
and electricity, associated with the constitutive relations of the various media and the boundary
conditions.

The resolution of such a model consists in identifying changes in the magnetic and electric fields
in space and over time. The finite element method is generally used to model complex systems.
Space and time discretisation of the domain under study is thus carried out. The magnetic and
electric fields are thus represented on the mesh elements. To this end, the University of Science
and Technology of Lille has designed code_Carmel.

EDF R&D wished to better master its tools for the calculation of electromagnetic fields. The
code_Carmel software package was chosen and it was decided to jointly develop it in partnership
with the University of Lille 1 within the Electrical Equipment Modelling Laboratory (LAMEL).

The reference methods for solving a magnetodynamic problem are step-by-step integration
methods over time. They are robust and easy to implement. Nevertheless, their high precision
is obtained at the cost of calculation times that can be very long, thus reducing their scope of
application.

They are all the more time-consuming given that the values of interest are calculated over
several periods to reach the steady state. The principle of spectral approaches consists in rep-
resenting the operator(s) of the physical system as a linear combination of predefined functions
(for which the operator(s) are easy to calculate). An approximation of the solution sought is thus
constructed on the basis of carefully chosen functions of finite and relatively small size. Spectral
methods (or multi-harmonic methods) are suitable tools for this purpose.

This document has chiefly been drafted based on the existing bibliography within LAMEL
(the list is given in Annex A). This bibliography is supplemented by more specific references
where necessary.

This document describes the operating principles of code_Carmel software in its time-based
and multi-harmonic versions (restrictions to one version or the other are indicated in the text).
It describes the electromagnetic equations used, their discretisation to enable use of the finite
element method, and the methods used to solve the mathematical problems involved.

With a nomenclature to standardise notation of the symbols used, the document has been
divided into five parts:

1. The specific modelling of the equations to be solved (the physical equations and consideration
of global variables and/or motion, etc.) ;

2. Time and space discretisation;

3. Construction of the matrix system;

4. Solution of the linear and/or non-linear problem;

5. Specific use of results such as exploratory points or iron losses.
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Nomenclature

Notation related to the continuous domain

a · b Scalar product of vectors a et b (contracted product)

a × b Vector product of vectors a et b

H (rot,D) Function space whose curl belongs to L2(D)

H 0(rot,D) Function space H (rot,D) satisfying a homogeneous Dirichlet boundary condi-
tion on the tangential component

L2(D) Square-summable vector function space defined on D

div Divergence operator

Γ Domain boundary D (∂D)

ΓB Domain boundary D where conditions are imposed of the form n · B = 0

Γc Conductive domain boundary Dc (∂Dc)

ΓE Domain boundary D where conditions are imposed of the form n ∧ E = 0

ΓH Domain boundary D where conditions are imposed of the form n ∧ H = 0

Γs
i Boundary of inductor i

ΓJ Domain boundary D where conditions are imposed of the form n · B = 0

⟨·|·⟩D Scalar product on D : (x,y) 7→ ⟨x|y⟩D =
∫

D x.y

dl Unit vector at a tangent to a curve

grad Gradient operator

n Unit vector normal to a surface

rot Curl operator

D Space domain under study

Di
s Wound or bar type inductor (where the source current is imposed)

Dc Conductive domain

Ds Source domain (all windings or bars) Ds = ∪iDi
s

Dnc Non-conductive or insulating domain (D \ Dc)

xv
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T Time domain under study

H (div,D) Function space L2(D) whose divergence belongs to L2(D)

H 1(D) Sobolev space of scalar functions whose derivative belongs to L2(D)

H 1
0 (D) Sobolev space of functions belonging to H 1(D) satisfying a homogeneous Dirich-

let boundary condition

H0(div,D) Function space H (div,D) satisfying a homogeneous Dirichlet boundary condi-
tions on the normal component

L2(D) Square-summable scalar function space defined on D

| · | Absolute value

∥ · ∥2 Euclidean norm

∥ · ∥L2(D) Norm L2 (D) induced by the scalar product ⟨·|·⟩D : x 7→ ⟨x|x⟩1/2
D

H0,x (grad,D) Function space H(grad,D) satisfying a homogeneous Dirichlet boundary con-
dition for the value of the function on Γx

Si Cross-section of inductor i

Notation related to the discrete domain

Γh Boundary of Dh (∂Dh)

w1
i Vector interpolation function associated with edge ’i’

w2
i Vector interpolation function associated with facet ’i’

Dh Discretised domain under study (set of volume elements)

Eh Set of edges

Fh Set of faces

Nh Set of nodes

W0 Space of dimension n0 of vectors containing all values at the nodes

W1 Space of dimension n1 of vectors containing all circulation values on the edges

W2 Space of dimension n2 of vectors containing all flux values across the facets

W3 Space of dimension n3 of vectors containing all values associated with the ele-
ments

D Matrix n3xn2 of element-facet incidence

G Matrix n1xn0 of edge-node incidence

M Mass matrix

R Matrix n2xn1 of facet-edge incidence

n0 Number of nodes in mesh M

n1 Number of edges in mesh M
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n2 Number of facets in mesh M

n3 Number of elements in mesh M

W 0 Scalar function space of dimension n0 generated by node interpolation functions

w0
i Scalar interpolation function associated with node ’i’

W 1 Vector function space of dimension n1 generated by edge interpolation functions

W 2 Vector function space of dimension n2 generated by facet interpolation functions

W 3 Scalar function space of dimension n3 generated by element interpolation func-
tions

Electromagnetic fields

B (x, t) Magnetic flux density (T)

D (x, t) Electric induction (C/m2)

E (x, t) Electric field (V/m)

H (x, t) Magnetic field (A/m)

J (x, t) Current density (A/m2)

Jind (x, t) Induced current density (A/m2)

ρ (x, t) Electric charge density (C/m3)

ρi Charge in element ‘i’ (C)

ρ Vector (1xn3) containing all charges ρi

b Vector (1xn2) containing all fluxes bi

d Vector (1xn2) containing all fluxes di

e Vector (1xn1) containing all circulations ei

h Vector (1xn1) containing all circulations hi

j Vector (1xn2) containing all fluxes ji

bi Flux of the magnetic flux density vector through facet ’i’ (Wb)

di Electric induction flux through facet ’i’ (C)

ei Circulation of the electric field along edge ’i’(V)

hi Circulation of the magnetic field along edge ’i’(A)

ji Current density flux through facet ’i’ (current through facet ’i’ in A)

Source fields

αi Value of the function α at node ’i’
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α Source scalar function

H s (x, t) Source field (A/m)

K (x, t) Normalised source field (A)

N (x, t) Normalised source field such that rotK = N (A/m2)

Js (x, t) Source current density (A/m2)

α Vector (1xn0) of values of α at node ’i’

h Vector (1xn1) containing all circulations hsi

k Vector (1xn1) containing all circulations ki

n Vector (1xn2) containing all circulations ni

hsi Circulation of the source field along edge ’i’ (A)

ki Circulation of the normalised source field along edge ’i’

ni Flux of normalised source field N of coils through facet ’i’ (A)

Potentials

A (x, t) Vector magnetic potential (Wb/m)

Ah (x, t) Finite Element approximation of the vector magnetic potential (Wb/m)

T (x, t) Vector electric potential (A/m)

Th (x, t) Finite Element approximation of the vector electric potential (A/m)

Ω (x, t) Scalar magnetic potential

Ωh (x, t) Finite Element approximation of the scalar magnetic potential

Ωi Value of the scalar magnetic potential at node ’i’

Ω Vector (1xn0) containing all node values Ωi

φ Vector (1xn0) containing all node values φi

a Vector (1xn1) containing all circulations ai

t Vector (1xn1) containing all circulations ki

φ (x, t) Scalar electric potential (V)

φh (x, t) Finite Element approximation of the scalar electric potential (V)

φi Value of the scalar electric potential at node ’i’ (V)

ai Circulation of the vector magnetic potential along edge ’i’ (Wb)

ti Circulation of the vector electric potential along edge ’i’ (A)
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Overall values and circuit coupling

ϕ Flux across a surface (Wb)

ξ Magnetic potential difference (A)

acir Number of branches in the circuit

bcir Number of independent loops in the circuit

Jcir Fictitious current in a loop of the external circuit

KM Branch–mesh incidence matrix

ncir Number of nodes in the circuit

UC Capacitive dipole voltage vector

UL Inductive dipole voltage vector

UR Resistive dipole voltage vector

US Source voltage vector

I Electric current (A)

V Electric potential difference (V)

Constitutive relations

Br (x, t) Remanent flux density (T)

Hc (x, t) Coercive field (A/m)

µ Permeability (H.m−1)

µ0 Vacuum permeability (4π 10−7 H.m−1)

µa Magnetic permeability of a magnet (H.m−1)

µr Relative permeability of a medium

σ Electrical conductivity (Ω−1.m−1)

br Vector (1xn2) containing all fluxes bri

h Vector (1xn1) containing all circulations hci

ε Permittivité

ε0 Vacuum permittivity

εr Relative permittivity of a medium

bri Flux of the remanent flux density through facet ’i’ (Wb)

hci Circulation of the coercive field along edge ‘i’ (A)
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Other physical variables

λ Wavelength (m)

x position

ω Angular frequency (rad.s−1)

f frequency (Hz)

ri Resistance of wound inductor ’i’

T Study duration in s

t time (s)

Finite elements

w1
i ième basic function conforming with H (rot,D)

w2
i ième basic function conforming with H (div,D)

Jac Jacobian matrix

u, v, w Coordinates of a point in the reference element coordinate system

w0
i ième basic function P 1 conforming with H 1(D)

x, y, z Coordinates of a point in space in the Cartesian coordinate system (O,i,j,k)

A total number of edges

a global edge number

E total number of elements

e global element number

F total number of facets

f global facet number

K A geometric element of the mesh

N total number of nodes

n global node number

Others

Alpha Displacement step ratio
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Chapter 1

Formation of the equations

Summary
This chapter defines the problems studied by specifying the mathematical equations governing
these models (magnetodynamic, magnetostatic and electrokinetic). Details are also given of the
sub-domains relevant to the model, the conditions for crossing from one sub-domain to another
and the domain boundary conditions.

1.1 Definition of the problem
In the following, we consider an electrotechnical system (see Figure 1.1) composed of air, ferro-
magnetic materials and/or conductors and magnetic field sources (wound or non-wound inductors,
and/or permanent magnets)1.

coil
magnet

iron

Figure 1.1: Schematic breakdown of the domain under study D

The entire system forms the domain under study D2 with boundary Γ. It is composed of:

• the conducting media, of domain Dc with boundary Γc. This is the domain where eddy
currents are created;

• a non-conducting medium Dnc.
1A wound inductor is a domain in which the current is imposed and is uniform across the domain
2D is an open set of R3

3
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Domain Dnc is made up of, for example:

• sources: wound or solid inductors carrying a current distribution Js, permanent magnets (if
they are assumed to be non-conductive);

• ferromagnetic materials;

• air (of magnetic permeability µ0).

The sources (regions of the domain where a source current density Js is imposed) define a
sub-domain Ds

3.

Remark 1.1.1 If the conductivity in the ferromagnetic materials, magnets and coils is not ne-
glected, the corresponding media are to be included in domain Dc.

Remark 1.1.2 The conductors, magnets and ferromagnetic materials may be in contact with each
other.

Remark 1.1.3 If the system under study has geometric symmetries or periodicity, it is possible
to reduce the domain under study D to only part of the system.

Remark 1.1.4 Boundary Γ may coincide with the boundary of a medium other than air.

Boundary Γ is divided into two portions ΓB and ΓH to impose domain boundary conditions
(see paragraph 1.7)4. As a reminder, ΓB is the boundary of domain D where conditions of the form
B .n = 0are imposed; ΓH is the boundary of domain D where conditions of the form n ∧ H = 0
are imposed; n is the normal vector leaving the given boundary.

The electromagnetic phenomena are investigated over a time interval T of between 0 and T
seconds:

T = [0, T ] (1.1)

1.2 Maxwell’s equations
The electromagnetic field is defined by four vector fields:

• D (x, t): electric induction (C/m2) ;

• E (x, t): electric field (V/m) ;

• H (x, t): magnetic field (A/m) ;

• B (x, t): magnetic flux density (T) ;

These vector fields depend on:

• t: time (s);

• x: given position.
3Sub-domains Dc, Dnc and Ds are included in D.
4We will have: ΓB ∪ ΓH = Γ and ΓB ∩ ΓH = ∅
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Space and time distributions of the magnetic and electric fields are obtained from Maxwell’s
equations [Bossavit 1993], [Durand 1968], [Fournet 1985], [Pérez et al 1990]. They are thus written:

rot H (x, t)= J (x, t) + ∂D (x, t)
∂t

(Maxwell-Ampère law) (1.2)

rot E (x, t)= − ∂B (x, t)
∂t

(Maxwell-Faraday law) (1.3)

div B (x, t)= 0 (Gauss’s magnetic law) (1.4)
div D (x, t)= ρ (x, t) (Gauss’s electric law) (1.5)

with the addition of the four vector fields defined above:

• ρ (x, t): electric charge density (C/m3) ;

• J (x, t): current density (A/m2) ;

Remark 1.2.1 In this system of equations, 1.2 and 1.3 express the coupling between the electrical
and magnetic values.

Finally, the electric charge conservation equation is added:

div J (x, t) + ∂ρ (x, t)
∂t

= 0 (1.6)

The latter equation is implicitly contained in 1.2, 1.3, 1.4 , and 1.5.

The current density J can be broken down into two terms: Js in the case where the inductor
is wound, the current density is assumed to be uniform and known, and Jind in the case of a
conductive domain where the current density is unknown.

J (x, t) = Jind (x, t) + Js (x, t) (1.7)

This system is supplemented by constitutive relations, depending on the materials modelled.

Jind = S (E (x, t))
H (x, t) = K (B (x, t)) (1.8)

In general, the induced current density is a function of the electric field. The magnetic field is
a function of the magnetic flux density. These relations will be detailed in paragraph 1.5.

Verification of the system of equations 1.2, 1.3, 1.4 and 1.55 implies the following continuity
conditions when an interface crosses between two media, characterised by its normal n:

E × n = 0 (1.9)
H × n = 0 (1.10)

B.n = 0 (1.11)
D.n = 0 (1.12)

These crossing conditions will be analysed in paragraph 1.6.
5in the sense of the distributions
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To be correctly formulated, the problem defined by equations 1.2, 1.3, , 1.4 and 1.5 must be
accompanied by domain boundary conditions. Conventionally, we write:

(n × H)|ΓH
= HΓ ⇔ (J · n)|ΓH

= JΓ (1.13)
(n × E)|ΓE

= EΓ ⇔ (B · n)|ΓE
= BΓ (1.14)

These boundary conditions will be discussed in paragraph 1.7.

Remark 1.2.2 In time-based code_Carmel, the values of these boundary conditions are zero.

1.3 Quasistatic states assumption
Solution of Maxwell’s equations, as presented in the preceding paragraph, leads to “retarded po-
tential solutions” [Pérez et al 1990]. This signifies that there is a delay between the electromagnetic
field at a given point in space and the sources that gave rise to it (see Annex B).

The quasistatic approximation is based on the assumption that the characteristic time scale for
changes in the sources (e.g. their period) is very much longer than the time scale for propagation.
This can be demonstrated by a dimensional analysis of Maxwell’s equations [Cahouet 1992].

Understanding this approach first requires a definition of the concept of the characteristic
time of a system [Montier 2018]. This characterises the rate of change of a physical value over
time. In other words, it represents the order of magnitude of the time required for a system
subjected to disturbance to reach equilibrium. In this presentation, we are interested in so-called
low frequency problems, and more particularly quasistatic states, valid when the characteristic
time of the system studied τ is very long compared with the propagation time of light in the
medium τem = l/c, where l represents the characteristic length of the system and c = (εµ)− 1

2 the
speed of light in the medium (ε being its electric permittivity and µ its magnetic permeability).
By defining the speed of change of the system by v = l/τ , the previous proposition also signifies
that we have v << c.

In this case, it can be considered that a disturbance is transmitted instantaneously throughout
the domain, thus making it possible to neglect propagation phenomena. This is called the non-
relativistic limit of the model. In practice, this approximation is valid for electrotechnical devices
with response frequencies of up to a few hundred kHz.

However, simple dimensional analysis shows that under these assumptions, the Maxwell-
Ampère and Maxwell-Faraday equations are not compatible. Indeed, if |∗| is the order of magnitude
of quantity *, the Maxwell-Faraday equation gives:

|E|
l

≃ |B|
τ

⇒ |E| ≃ v|B| (1.15)

with v = l/τ .

Similarly, dimensional analysis of the Maxwell-Ampère equation without source current gives:

|H|
l

≃ |D|
τ

(1.16)

By adding the linear constitutive relations, this gives:

|B|
µl

≃ ε|E|
τ

⇒ |E| ≃ c2

v
|B| (1.17)
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Hence the two Maxwell-Ampère and Maxwell-Faraday equations lead to two scale factors
between |E| and |B|, namely v and c2

v . They become compatible in the relativistic case where
v ≃ c. Hence, the Maxwell-Ampère and Maxwell-Faraday equations produce incompatible scale
factors, and one of the two must thus be partially neglected. This choice will be made with
particular regard to the order of magnitude of the current source J and charge source ρ. The two
resulting models are the electroquasistatic and the magnetoquasistatic.

1.3.1 Electroquasistatic model

In the electroquasistatic model, the variation in the electric induction field produces a magnetic
field, while a fluctuation in the magnetic induction field does not induce an electric field. The
Maxwell-Faraday equation is thus no longer valid and is replaced by:

rot E = 0

Dimensional analysis shows that this model is valid when:

|J| << |ρ| c (1.18)

Hence, Maxwell’s equations within the limit of the electric quasistatic approximation are (the
values are given a subscript “e” to indicate the electroquasistatic model):

rot He = Je + ∂De

∂t
(1.19)

rot Ee = 0 (1.20)

div Be = 0 (1.21)

div De = ρe (1.22)

while that for the charge conservation remains identical:

∂ρe

∂t
+ div Je = 0 (1.23)

In this set of equations, the magnetic induction field Be and the magnetic field no longer He

appear as source terms (right-hand side). The electric and magnetic equations are thus decoupled.
Hence, it is only necessary to solve equations 1.20, 1.22 and 1.23 to find Ee and De:

rot Ee = 0
div De = ρe

∂ρe

∂t
+ div Je = 0

and to reconstruct a posteriori the magnetic unknowns Be and He using:

rot He = Je + ∂De

∂t
div Be = 0
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1.3.2 Magnetoquasistatic model
Conversely, the magnetoquasistatic model is valid when:

|J| >> |ρ| c (1.24)

This makes it possible to neglect the displacement currents ∂D
∂t

in the Maxwell-Ampère equa-
tion. Physically, this approximation implies that a variation in the magnetic induction field pro-
duces an electric field while a fluctuation in the electric induction field has no effect on the magnetic
field. Within the limit of the magnetic quasistatic approximation, Maxwell’s equations become
(the values are given the subscript “m” to indicate the magnetoquasistatic model):

rot Hm = Jm (1.25)

rot Em = −∂Bm

∂t
(1.26)

div Bm = 0 (1.27)

div Dm = ρm (1.28)
By assuming |J| >> |ρ| c, the charge conservation equation is modified and only allows sta-

tionary currents:

div Jm = 0 (1.29)
At first glance, the electric unknowns no longer appear as source terms in Maxwell’s equations.

By analogy with the electroquasistatic model, the electric and magnetic equations can be decoupled
(finding Bm and Hm from 1.25, 1.27 and 1.29, then reconstructing Em and Dm using 1.26 and
1.28).

However, a problem arises when the system contains a conductive domain in which induced
currents are generated. Indeed, the source term in the Maxwell-Ampère equation depends on E
according to the constitutive relation. The four equations are thus coupled in Dc and it is then
question of solving them simultaneously. In summary, the electric and magnetic equations for the
magnetoquasistatic model can be decoupled in D \ Dc and must be considered simultaneously in
Dc.

In the non-conductive domain D \ Dc, equations 1.25, 1.27 and 1.29 are solved initially in
order to find Bm and Hm:

rot Hm = Jm

div Bm = 0
div Jm = 0

before reconstructing fields Em and Dm using 1.26 and 1.28:

rot Em = −∂Bm

∂t
div Dm = ρm

In the conductive domain Dc, we can find Bm, Hm, Em and Dm by simultaneously solving:

rot Hm = Jm

rot Em = −∂Bm

∂t
div Bm = 0
div Dm = ρm

div Jm = 0
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Remark 1.3.1 With the constitutive relations for linear and isotropic homogeneous permittivity
and conductivity in the conductive domain, the magnetoquasistatic model requires that ρm should
be zero in Dc. Indeed, the expression 1.25 implies that div Jm = σm divEm = 0 in the conductive
domain (as div (rot Hm) = 0). Yet ρm = divEm/εm, hence ρm = 0 in Dc. In this case, the
Maxwell-Gauss and charge conservation equations become equivalent at divEm = 0 and only one
of the two need be considered.

1.3.3 Choice of model
In practice, electrotechnical devices have mainly inductive effects with the displacement currents
∂D
∂t

often negligible. Hence, the magnetoquasistatic model is particularly suited to typical
electrotechnical applications, and will be used in the remainder of this presentation.

Remark 1.3.2 Reference may be made to [Rapetti, Rousseau 2011] for a more mathematical jus-
tification, where the characteristic times of the various electromagnetic phenomena are compared.

From a terminological point of view, two classes of problem can be distinguished within the
magnequasitatic model:

• the magnetostatic problem, when the system does not contain conductive sub-domains
(Dc = ∅). In this case, the behaviour of the system is statique from a magnétique point of
view: the main equations of the problem 1.25, 1.27 and 1.29 no longer contain time derivative
terms. The reader will note that the problem is not purely static, given the term ∂Bm

∂t
in the

Maxwell-Faraday equation 1.26. However, the dynamic is restricted to the electric equations,
which are solved a posteriori once Bm and Hm have been found.

• the magnetodynamic problem, if a conductive sub-domain is present in the domain under
study (Dc ̸= ∅). As seen above, all equations in the conductive domain must be taken into
account, in particular the Maxwell-Faraday equation, which introduces the term dynamique
∂Bm

∂t

For the sake of clarity, the subscript m will be abandoned in the remainder of this presentation,
though the quantities B, H, E, D, J and ρ will nevertheless refer to those resulting from the
magnetoquasistatic model.

1.4 Partial differential equations in the continuous domain
In the types of problem dealt with by code_Carmel„ the space and time distributions of the
electric fields E and J and the magnetic fields B and H are sought throughout the domain D and
in a time interval [0,T] (denoted T ).

The current time-based version of code_Carmel is limited to cases magnetodynamics and static
electromagnetism (magnetostatic and electrokinetic).

Remark 1.4.1 The spectral version of code_Carmel does not deal with electrokinetics. It allows
magnetodynamic and magnetostatic modelling.

1.4.1 Magnetodynamic problem
Given the quasistatic state assumptions, the equations of an electromagnetic problem in the qua-
sistatic state are:
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rot H (x, t) = J (x, t) (1.25)

rot E (x, t) = −∂B (x, t)
∂t

(1.3)

div B (x, t) = 0 (1.4)

div D (x, t) = ρ (x, t) (1.5)

with:

div J (x, t) = 0 (1.29)

1.4.2 Magnetostatic problem
It is assumed that the phenomena are time invariant. Equations involving magnetic or electric
terms are decoupled. Maxwell’s equations are then written for the magnetic phenomena:

div B (x) = 0 (1.30)

rot H (x) = Js (x) (1.31)

From these equations it can be deduced:

div J (x) = 0 (1.32)

Remark 1.4.2 In the special case where motion is involved, the phenomena are no longer time
invariant. The assumption then becomes “absence of eddy currents”. In this case, the equations
are more accurately written:

div B (x, t) = 0 (1.33)

rot H (x, t) = Js (x, t) (1.34)

and we still have:

div J (x, t) = 0 (1.35)

1.4.3 Electrokinetic problem
If the domain under study is restricted to the conductive domain Dc, the equations to be solved
are limited to:

rot E (x) = 0 (1.36)

div J (x) = 0 (1.32)

Remark 1.4.3 The spectral version of code_Carmel does not deal with electrokinetic problems.
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1.5 Electrical and magnetic constitutive relations of the me-
dia

The electrical and magnetic behaviour of the various media in the domain under study are taken
into account by the constitutive relations. These link together the various magnetic and electric
fields. These relations involve not only the fields themselves but also variables such as temperature
or mechanical stress. These variables will be assumed to be constant in the following. Thus,
the relations then strictly depend only on the position considered, the time, and possibly the
electromagnetic fields.

In general, in an electrotechnical problem, a physical property characterises a sub-domain of
the space domain D.

1.5.1 Electrical conductivity
The electrical conductivity is generally assumed to be constant for each sub-domain of the space
domain D. A relation of the following form is then obtained for each sub-domain considered:

J (x, t) = σ (x,E) E (x, t) (1.37)

with σ the electrical conductivity in the sub-domain (Ω−1.m−1).

Remark 1.5.1 This parameter can be a tensor of R3×3.

It may be necessary to define an anisotropic conductivity, e.g. to model a thin lamination
stack in the form of a single medium or to limit parasitic currents. This is possible since version
1.13.2 of the time-based code, in a vector form that allows definition of the conductivity along the
3 Cartesian axes Ox, Oy and Oz, and also in a tensor form.

The vector form can be used, for example, for Fe-Si laminations in the Oxy plane and stacked
in the Oz direction. If we define that the conductivity is 100 times lower along Oz due to the
insulators, the conductivity of this medium will be defined as follows: 5.0d7, 5.0d7, 5.0d5. To cover
all possible cases, the conductivity can be defined by a 3x3 tensor, its diagonal being equivalent
to the vector conductivity.

Remark 1.5.2 Warning! Zero values for the anisotropic conductivity can only be used in formu-
lation A − φ. Aberrant results may be obtained in formulation T − Ω, as this uses the inverse of
conductivity, namely resistivity, which would become partly infinite. The code cannot work with
such values.

Remark 1.5.3 It should also be noted that excessively high anisotropy values can make it more
difficult to obtain results, due to poor numerical conditioning of the system to be solved.

In the conductive domain Dc, all fields can be defined. On the other hand, in non-conductive
areas (σ = 0) where the induced currents are zero (only the wound inductor currents Js are
present), the electric field E cannot be defined6. In these areas, it is thus necessary to solve a
magnetostatic problem with partial differential equations of the form:

rot H (x, t) = Js (1.38)

div B (x, t) = 0 (1.4)
6As a result, the electric field E cannot be uniquely defined as there is then an infinite number of fields E

verifying the constitutive relation 1.37 and the partial differential equation 1.3 (If a vector X is a solution of 1.3
then any field E such that E = X + grad φ with φ a scalar function of finite value, is also a solution of 1.3 and is
further a solution of 1.37 because since σ = 0, we have Jind = 0 at any point of D)
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1.5.2 Magnetic permeability
For magnetic behaviour, if the material is not ferromagnetic, the model is linear and of the following
form, for each sub-domain of the space domain under study D:

B (x, t) = µ0 µr (x,H) H (x, t) + Br (1.39)

with:

• µ0 the magnetic permeability of air;

• µr the relative magnetic permeability (this parameter can be a tensor of R3×3);

• Br the remanent magnetic flux density.

1.5.2.1 Ferromagnetic materials

For ferromagnetic materials, relatively complex models can be used that take into account the
phenomenon of hysteresis [Johnson 1987]. However, their introduction into numerical models
leads to an increase in computation time that may be acceptable in 2D, but is now completely
unacceptable in 3D. Hence, for soft ferromagnetic materials, it is preferable to use a relation of
the form:

B (x, t) = µ0 µr

(
∥H∥2

2
)

H (x, t) (1.40)

with a function µr that can be taken from:

• a law such as [Marrocco 1977] (time-based version of code_Carmel):

H = B

µ0

cB2 α + τ ϵ

B2 α + τ
(1.41)

where:

• µ0 is the magnetic permeability of a vacuum;
• α, c, τ and ϵ are characteristic variables of the given magnetic material.

• a spline expression of the constitutive relation B (H) (spectral and time-based versions of
code_Carmel);

• from Fröhlich’s equation. This anhysteretic model [Swift et al, 2001] was developed by
Fröhlich in 1881. The relationship between the flux density and the magnetic field can be
presented in two ways:

µ (∥H∥2) = α

1 + αβ∥H∥2
(1.42)

or

ν (∥B∥2) = 1
α− β∥B∥2

(1.43)

with α = µm the maximum permeability and β = α

∥Bsat∥2
where ∥Bsat∥2 is the value of the

magnetic flux density at saturation.

Remark 1.5.4 The spectral version of code_Carmel only has the form with first-order splines
(piecewise linear interpolation).
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The magnetic constitutive relation may be rewritten in the form:

H = ν (B) B (1.44)

to simplify the calculus of variations. Thus, the value ν (expressed in m.H−1) denotes the
magnetic reluctivity and is defined such that:

ν (B) = (µ (H))−1 (1.45)

1.5.2.2 Magnets

In the case of hard materials (permanent magnets), the phenomenon of remanence is introduced
[Chavanne 1988], and a law of the following form is obtained for each sub-domain that includes a
permanent magnet:

B (x, t) = µa H (x, t) + Br (1.46)

with:

• Br the remanent magnetic flux density;

• µa the magnetic permeability of the magnet, which is assumed to be constant and close to
the permeability of air.

1.6 Crossing conditions at media interfaces
The relations described above are valid at points in space where the properties (ε, µ, σ) of the
materials are continuous. This is no longer the case at interfaces between different materials
(Figure 1.2).

n

E1

E2

Domain 1

Domain 2

Figure 1.2: Crossing conditions

If we denote E1, E2, D1, D2, B1, B2, H1, H2, the values calculated with equations 1.2 to 1.5
on either side of the interface and n, a normal to this interface, the relations between the values
in the two domains are:



14 CHAPTER 1. FORMATION OF THE EQUATIONS

n × (E1 − E2) = 0 (1.47)

n · (B1 − B2) = 0 (1.48)

n × (H2 − H1) = Jsurf (1.49)

n · (D2 − D1) = γ (1.50)

where γ is a surface charge density at the interface and Jsurf a surface current density.

In the context of code_Carmel, both these values are zero:

γ = 0
Jsurf = 0 (1.51)

1.7 Boundary conditions
Solving the system composed of Maxwell’s equations and the constitutive relations (see paragraph
1.5) allows an infinite number of solutions. As a result, so that the problem is properly formulated
mathematically and to ensure a unique solution, initial conditions are added for the time domain
[0, T ] and boundary conditions are imposed for the space domain D.

Figure 1.3: Boundary conditions

It is assumed that D contains the source domain Ds and the conductive domain Dc which is
a R3 bounded open set, simply connected, with connected Lipschitz boundary Γc. Finally, it is
assumed that domains Dc and Ds are strictly disjoint (Dc ∩ Ds = ∅) and strictly included in D
(Ds ∩ Γ = D⌋ ∩ Γ = ∅).

The boundary Γ of domain D is broken down into two complementary parts denoted ΓH and
ΓB such that ΓH ∩ ΓB = ∅ and ΓH ∪ ΓB = Γ (see Figure 1.3). At the boundary ΓH , boundary
conditions are imposed of the form (perfect magnetic conductor):

H (x, t) × n|ΓH
= 0 (1.52)

This condition makes it possible to consider a medium of infinite magnetic permeability on the
other side of the domain, forcing the magnetic field to cross boundary ΓH .

From equation 1.25 it is deduced that (electric wall):

J (x, t) · n|ΓH
= 0 (1.53)
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At boundary ΓB , in general, boundary conditions are imposed depending on the nature of the
medium in contact with ΓB . If the medium is conductive, we impose (perfect electrical conductor):

E (x, t) × n|ΓB
= 0 (1.54)

from equation 1.3 it is deduced that (magnetic wall):

B (x, t) · n|ΓB
= 0 (1.55)

On the other hand, if the medium is non-conductive, boundary conditions are imposed only
on B and not on E, as E is not defined in the non-conductive areas [Golovanov et al 1998]. In
this case, the only condition that can be imposed on E is that its tangential component is written
Et = n × gradφ with φ a scalar electric potential.

Finally, the conditions on Γc should be described. Indeed, this boundary is strictly included
in the domain under study and thus should not bear any boundary conditions. However, with the
magnetoquasistatic model, the electrical unknown is only taken into account inside the conductive
domain. A boundary condition should be added for Γc. This is obtained for Γc from the tangential
continuity equation of the magnetic field for zero surface currents:

[H × n]Γc
= 0 (1.56)

Then, considering the divergence of this equation and vector equality:

div (U × n) = rot U .n

we have:

[rot H .n]Γc
= 0 (1.57)

Finally, from the Maxwell-Ampère equation:

[(Js + σE) · n]Γc
= 0 (1.58)

Now, Js is zero on Γc because there is no wound conductor in Dc or in contact with Dc, and
also because: σ = 0 in D \ Dc. The boundary condition on E along the length of Γc is thus
obtained:

σE · n |Γc
= 0 (1.59)

Remark 1.7.1 The preceding equation is also written J .n|Γc = 0 which makes it possible to
conserve J between D \ Dc where J is zero, and Dc where J is defined and non-zero.

Remark 1.7.2 The case where the conductive domain Dc and the source domain Ds touch bound-
ary Γ is thus not taken into account here. However, the model can easily be adapted to deal with
this case.

Remark 1.7.3 In the case of the spectral version of code_Carmel„ the boundary conditions may
not be zero. This point will be dealt with later.
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Chapter 2

Formulation of potential equations
in code_Carmel

Summary
Maxwell’s equations and associated constitutive relations can be solved by considering the fields as
unknowns [Bossavit 2003], [Daveau, Rioux-Damidau 1999], [Dular 1994], [Ren et al 1990]. Never-
theless, in code_Carmel, it is preferred to express the magnetic and electric fields as a function of
potentials, which may be scalar or vector. The electrokinetic, magnetostatic and magnetodynamic
equations are described here as a function of potentials, following the presentation of [Le Menach
1999] .

2.1 Electrokinetic problem
In the case of an electrokinetic problem (see Figure 2.1), the current density distribution is sought
in a conductive material subjected, for example, to an electric potential difference [Le Menach
1999], [Korecki 2009].

Figure 2.1: Typical electrokinetic problem

In the example in Figure 2.1, the current is sought in the portion of the ring of electrical
conductivity σ from the fixed electric potentials on ΓB1 and ΓB2.

2.1.1 Reminder of the equations
If the sources are of the continuous type (time-invariable), an electrokinetic problem can be solved
to obtain the steady state of the electrical values in the conductive domain. In this case, the

17
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system of equations to be solved is written:

rotE (x) = 0 avec E × n|ΓB
= 0 (2.1)

div Jind (x) = 0 avec Jind · n|ΓH
= 0 (2.2)

Jind (x) = σE (x) (2.3)
where σ is constant for each sub-domain.

The distributions of E and Jind are sought in the entire domain under study, and their changes
are independent of time. Two potential formulations can be used to solve this type of problem.

Remark 2.1.1 These formulations are not available in the spectral version of code_Carmel.

2.1.2 Magnetic formulation φ

Given that the field has zero curl (see equation 2.1) and given that domain D is simply connected
and Γ connected, it is expressed as a function of a scalar electric potential φe such that:

E = −gradφe (2.4)
By expressing the current density Jind as a function of the scalar potential φe and the electrical

constitutive relation 1.37 (or, for the formulation φ, as the vector magnetic potential is no longer
introduced into equation 2.32), the equation is solved:

divσ gradφe (x) = 0 avec E = −gradφe (2.5)
In the case of Figure 2.1, the surface of the conductor is broken down into four parts ΓB , ΓH

(with Γ = ΓB ∪ ΓH), ΓB1 and ΓB2 (with ΓB = ΓB1 ∪ ΓB2). The boundary conditions 1.54 are
then written:

φe|ΓB1 = φ1 et φe|ΓB2 = φ2 (2.6)
It will be noted that φ12 = φ1−φ2 represents the potential difference imposed on the conductor.

Since the scalar potential is defined as a constant, we can arbitrarily choose φ2 = 0 and φ1 = φ12.
A source scalar potential φs defined as follows (see Figure 2.2) is now introduced:

Figure 2.2: Typical electrokinetic problem and imposition of a scalar potential

φs|ΓB2 = 0 ; φs|ΓB1 = φ12 et φs = 0 sur D − Dε (2.7)
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and φs varies linearly over the thickness ε , which is arbitrary. Potential φe can thus be written
by introducing a potential φ 1:

φe = φ+ φs with φ|ΓB
= 0 (2.8)

The initial problem is thus reduced to the following equivalent:

divσ gradφ (x) = −divσ gradφs (x) (2.9)

with:

• E = −grad (φ+ φs);

• div Jind = 0;

• Jind = −σ grad (φ+ φs)

2.1.3 Electrical formulation T
Given that the current density Jind is, according to equation 1.32, a zero divergence vector field,
it derives from a vector electric potential Te such that:

Jind = rot Te (2.10)

In addition, the current density Jind is normal to surfaces ΓB1 and ΓB2. As a result, the flux of
Jind through these surfaces, which represents the current intensity I0, can serve as a source term
for the vector electric potential problem. Indeed, if we denote J0 a current density distributed
uniformly in the conductor of cross-section Sc and n the normal to Sc, this gives:

I0 = J0 .nSc (2.11)

The current density Jind can then be written as the superposition of J0 plus a current density
Jm, thus giving [Biro et al 1993]:

Jind = J0 + Jm (2.12)

By definition, J0 is zero divergence so we can write:

J0 = rot Hs (2.13)

where Hs represents a source magnetic field2. It will be noted that Hs it is not unique and
that there are an infinite number of source fields such that their curl gives current density J0.

From equations 2.10, 2.12 and 2.13 it is deduced that Jm is zero divergence. Jm can thus also
be expressed as a vector electric potential T. Hence, this gives:

Jind = rot (T + Hs) (2.14)

Given that the normal component of Jm is zero on ΓH , T will be taken such that:

T × n|ΓH
= 0 (2.15)

In fact, contrary to Te defined in 2.10, the circulation of T on a curve C of Γ, surrounding the
conductor, is equal to zero since the flux of Jm is zero across any section3.

However, the circulation of Hs on this contour C is equal to I0.
1As indicated in paragraph 5.1.4, φ ∈ H0,B (grad, D)
2belonging to H (rot, D), as shown below
3According to equations 2.14 and 2.15, the vector potential T belongs to H0,H (rot, D).
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In the same way as for the scalar electric potential formulation, the initial problem is equivalent
to solving:

rot 1
σ

rotT (x) = −rot 1
σ

rotHs (2.16)

with:
Jind = rot (T + Hs)

However, it will be noted that the vector potential T is defined at a specific gradient. Equation
2.16 thus allows for an infinite number of solutions. To ensure a unique solution, we must impose
a gauge condition. There are several, notably the Coulomb gauge [Durand 1968], [Fournet 1985]:

div T = 0
Another gauge consists in imposing the scalar product U .w = f (r) [Albanese, Rubinacci

2000]. (see Annex C).

2.2 Magnetostatic problem
2.2.1 Reminder of the equations
When the problem does not involve induced currents, we are required to solve the magnetostatic
equations, which are written:

rot H (x) = Js (x) avec H × n|ΓH
= 0 (2.17)

div B (x) = 0 avec B · n|ΓB
= 0 (2.18)

B (x) = µH (x) + Br (2.19)
where µ is constant for each sub-domain.

Two potential formulations may be used.

Remark 2.2.1 Coupling between the potential equations defined in the conductive and non-conductive
domain occurs naturally if formulations of the same type are used, such as the formulation A - φ
(T - Ωrespectively) for the conductive domain and the formulation A (Ω respectively) for the non-
conductive domain. It suffices to satisfy certain continuity conditions for the potentials [Boualem
1997] [Dular 1994].

2.2.2 Vector magnetic potential formulation A
Given that the magnetic flux density is zero divergence, according to equation 1.4, a vector mag-
netic potential, denoted A, can be introduced such that:

B (x) = rotA (x) (2.20)
The normal component of B being zero on ΓB , the boundary conditions for the vector potential

are as follows:

A × n|ΓB
= KA (2.21)

with A defined in the entire domain D4

4According to equations 2.20 and 2.21, the vector potential A belongs to H0,b (rot, D).
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As with the scalar potential formulation, the source term is generally the current density.
Without changing the general appearance of the problem, we will take KA as being equal to zero
on ΓB . However, if it is desired to impose a flux, a source vector potential A can be superimposed
on the vector potential As over all or part of domain D (see paragraph 2.1.3).

This expression of the magnetic flux density (equation 2.20) leads to a new equation for the
magnetic field:

H = 1
µ

rot A − 1
µ

Br

Using 2.17 the equation to be solved is given by:

rot 1
µ

rotA (x) = Js (x) + 1
µ

rot Br (2.22)

where µ is constant for each sub-domain.

It has been shown (from the equations in paragraph 5.1.1) that there are an infinite number of
solutions for the vector potential A. A unique solution can be obtained, as for the vector electric
potential (see paragraph 2.1.3), by imposing a gauge condition [Albanese, Rubinacci 2000].

Remark 2.2.2 In the spectral version of code_Carmel, no gauge is applied.

2.2.3 Scalar magnetic potential formulation Ω
To take account of the inductors, where the current density Js is known, we introduce, as in the
electrokinetic case, a source magnetic field Hs defined by equation 2.13.

Js = rot Hs

Given that the domain is simply connected, it is possible to introduce a scalar magnetic po-
tential Ω such that:

H (x) = Hs (x) − grad Ω (x) (2.23)

In contrast to electrokinetic problems, we can have Hs such that Hs × n = 0 on ΓH . Indeed,
the boundary ΓH is not entirely in contact with the inductors. With the boundary conditions on
H, we have:

−gradΩ × n|ΓH
= 0 d’où Ω|ΓH

= KΩ (2.24)

where KΩ is a constant. It is possible to introduce a magnetic potential difference between two
disjoint surfaces of ΓH by adding a source scalar potential as proposed in the electrokinetic case.
In magnetostatic applications processed using code_Carmel, only inductors will be considered as
magnetic field sources. Consequently, in the following, we will take KΩ as being equal to zero5

The equation to be solved is deduced from 1.4 and 2.23 such that:

divµgrad Ω (x) = divµHs (x) + div Br (2.25)

where µ is constant for each sub-domain.
5Under these conditions, the scalar potential Ω thus belongs to sub-space H0,h (grad, D).
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2.3 Magnetodynamic problem

2.3.1 Reminder of the equations
We consider a domain D containing a conductive domain Dc, assumed to be contractible, and
wound inductors.

To simplify the mathematics, we will limit the electromagnetic field sources to a single in-
ductor but extension to several inductors is quite possible, as shown in studies carried out with
code_Carmel. Finally, it is also possible to apply an electric potential difference to the terminals
of the conductive domain or to impose a current there.

For a wound inductor, a source magnetic field is defined, denoted Hs, such that rotHs = Js
with Hs × n = 0 on ΓH .

Remark 2.3.1 It will be noted that Hs is not unique and that there are an infinite number of
source fields such that their curl is equal to the current density flowing through the wound inductor.

Unless there are specific constraints on the field, it can be defined for the entire domain D.
Under these conditions, the local form of Ampère’s circuital law is written:

rotH (x, t) = Jind (x, t) + Js (x, t) (2.26)

with:

Jind (x, t) = σE (x, t) (2.27)

where:

• Jind represents the induced current density in the conductive domain Dc;

• σ is the electrical conductivity, constant for each sub-domain of the conductive domain Dc.

In addition:

rotHs (x, t) = Js (x, t) (2.28)

Two potential formulations can be introduced: the electrical formulation and the magnetic
formulation. These formulations are defined only in the conductive domain Dc (the term Js is
thus zero, though Hs is not necessarily zero).

2.3.2 Electrical formulation A − φ

Given that the magnetic flux density is zero divergence, according to equation 1.4, a vector mag-
netic potential, denoted A, can be introduced such that:

B (x, t) = rotA (x, t) avec A × n|ΓB
= 0 (2.29)

with A defined in the entire domain D.

By using equation 1.3 and according to equation 2.29, the field E can be expressed as a function
of the vector potential defined at a specific gradient. We thus have:

E (x, t) = −∂A (x, t)
∂t

− grad (φ (x, t) + φs) (2.30)
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where φ is the scalar electric potential defined in paragraph 2.1.2. If we consider only short-
circuit conductors, the potential φs is zero6.

By replacing the magnetic field H and the current density Jind by their expressions as a function
of A and φ, and taking into account constitutive relation 1.46, the local form of Ampère’s circuital
law 1.25 and the current density conservation law 1.29 are written:

rot 1
µ

rotA (x, t) + σ

(
∂A (x, t)

∂t
+ gradφ (x, t)

)
= Js (x, t) + 1

µ
rotBr (2.31)

divσ
(
∂A (x, t)

∂t
+ gradφ (x, t)

)
= 0 (2.32)

where µ and σ are constant for each sub-domain.

An infinite number of vectors A can be defined such that their curl is equal to the magnetic
flux density. To ensure the uniqueness of this potential, a gauge condition is introduced such as
the Coulomb gauge divA = 0 or a shape condition A · W = 0 with W a vector field whose field
lines do not form loops and are such that they connect all the points of the domain [Albanese,
Rubinacci 2000], [Kettunen et al 1999]7.

Remark 2.3.2 In the spectral version of code_Carmel, no gauge is applied.

2.3.3 Magnetic formulation T − Ω
The formulation T − Ω in the spectral version of code_Carmel is limited to linear problems with
source fields of the wound type.

In the case of a magnetic formulation, field H is expressed as a function of potentials and field
Hs. Given that the induced current density is zero divergence, a vector electric potential, denoted
T, can be introduced such that:

Jind (x, t) = rot T (x, t) (2.33)
with T defined in the conductive domain.

Given that the conductive domain is assumed to be contractible, we can then take T = 0
outside the conductive domain and impose T × n = 0 on boundary Γc of Dc.

Given that rot H (x, t) = Jind (x, t) + Js (x, t), this gives:

rot (H (x, t) − Hs (x, t) − T (x, t)) = 0 (2.34)
Field H can thus be expressed as a function of vector potential T and field Hs defined at a

specific gradient. We thus have:

H (x, t) = Hs (x, t) + T (x, t) − grad Ω (x, t) avec T × n|Γc = 0 et Ω|ΓH
= 0 (2.35)

with Ω the scalar magnetic potential defined in the entire domain.

By introducing equations 2.33 and 2.35 into the local form of Faraday’s law 1.3 and the magnetic
induction conservation law 1.4, the system to be solved is written in the form:

6We will see that φ belongs to H0,B (grad, D) and A belongs to H0,B (rot, D).
7A specific gauge can sometimes be chosen that sets φ = 0. This is the formulation A*. This formulation is not

currently available in code_Carmel
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rot 1
σ

rotT (x, t) + ∂

∂t
µ (T (x, t) − grad Ω (x, t)) = −rot 1

σ
rotHs (x, t) − ∂

∂t
(µHs (x, t) + Br)

(2.36)

divµ (T (x, t) − grad Ω (x, t)) = −div (µHs (x, t) + Br) (2.37)

where µ and σ are constant for each sub-domain.

As with the formulation A - φ, a gauge condition must be applied to vector potential T to
ensure uniqueness. This gauge is defined only in the conductive domain Dc.

Remark 2.3.3 In the spectral version of code_Carmel, no gauge is applied.



Chapter 3

Computation and imposition of
global electromagnetic quantities

Summary

The preceding chapters have provided the local equations to be solved for magnetodynamic, elec-
trokinetic and magnetostatic problems. The sources are naturally current densities. However, in
practice it is useful to impose data consisting of other electrical values. Hence, in addition to these
sets of equations, overall equations can be added (often in integral forms). This chapter introduces
these complementary expressions and a way to introduce them [Korecki 2009].

3.1 Introduction of K and N fields

Consider the system, included in domain D of boundary Γ, shown in Figure 3.1). It is made up
of an inductor (Di

s boundary Γi
s) and the domain Dnc.

Figure 3.1: Definition of overall values and boundary conditions for the problem studied

25
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On the surfaces Γb1 and Γb2 we impose either a current density flux Is or a potential difference
V = φ1 − φ2.

It is assumed that the current density Js in the inductor is uniformly distributed. In addition,
the cross-section Si

s of the inductor is assumed to be constant. If n denotes the normal to Si
s, we

can define a vector field N such that:

N = 1
Si

s

n dans Di
s (3.1)

N = 0 dans Dnc (3.2)

The normal component of N is zero on Γi
s − (Γb1 ∪ Γb2). In addition, by definition, N is a

zero divergence vector field and allows definition of the geometry of the inductor. Based on the
properties of N, a vector K can be introduced such that:

rot K = N (3.3)

If the surface of the conductor is not fully in contact with surface Γh, then:

K × n|Γh
= 0 (3.4)

Under these conditions, the vectors N and K belong respectively to H0,x(div,D) and to
H(rot,D). If Γi

s\(Γb1 ∪ Γb2) is included in Γh (the electrokinetic problem), then N still be-
longs to H(div,D). Conversely, K then belongs to H(rot,D) as the circulation of K on Γh is not
zero. It is important to note that there are an infinite number of vectors K for which the curl is
equal to N.

For solid conductors, there is no direct link between the current density distribution J and the
vector N. Conversely, for multifilamentary conductors it can be assumed that the current density
is uniformly distributed, and thus:

Is =
∫

Si
s

Js ds = Js Si
s (3.5)

where Is represents the current flowing through the inductor. The current density Js can then
be expressed as a function of vector N by the equation:

Js = N Is (3.6)

In addition, based on equations 2.28 and 3.3, we have:

Hs = Is K (3.7)

Vectors N and K, which are the carriers of vectors Js and Hs, allow coupling of the electro-
magnetism equations and those of the electrical circuit.

3.2 Introduction of the function α et du champ β

A vector field β is defined with the following properties:

rotβ = 0

β × n|Γm
= 0∫

γ12
β .dl = 1

(3.8)

As field β has zero curl, a scalar function α is defined such that:



3.3. ELECTROKINETICS 27

β = −gradα

α|Γm
= Cte

α2−1 = 1

(3.9)

3.3 Electrokinetics
The previous equations are applied here to the case of an electrokinetic model. According to the
formulation, to impose overall electrical values, the following conditions must be verified:

• for the voltage:

VΓb2 − VΓb1 =
∫

γ

E .dl = V (3.10)

• for the current: ∫
Γb1

J .n ds = −
∫

Γb2

J .n ds = I (3.11)

These two equations can be used to determine the voltage if the current is imposed and vice
versa, after solving the problem.

3.3.1 Vector electric potential formulation T
The current density can be broken down into two terms: an unknown term Jind and a source term
Js.

J = Jind + Js (3.12)
In the case of this formulation, it is possible to show the current I in the source term expression.

3.3.1.1 Imposition of the current

The vector field N has the same properties as the source current density at a given I. It can thus
be used to characterise this source current density:

Js = I N (3.13)
Hence, we validate equation 3.11 which is now written in the form:∫

Γb1

J .n ds =
∫

Γb1

Jind .n ds+
∫

Γb1

Js .n ds = I∫
Γb2

J .n ds =
∫

Γb2

Jind .n ds+
∫

Γb2

Js .n ds = −I
(3.14)

With: ∫
Γb1

Jind .n ds = 0 et
∫

Γb1

Js .n ds =
∫

Γb1

I N .n ds = I (3.15)

By considering C, a non-contractible contour defined on Γh, the following equation is also
validated: ∮

C

T .dl = I (3.16)
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Where T is the vector electric potential, which itself is broken down into two terms:

T = TI + Ts (3.17)
By introducing vector potential K in the expression for the source term Ts, the current density

can be written:

J = rot (TI + I K) (3.18)
Here we find the concept of cut-out (see chapter 4):

K × n ̸= 0 sur Γh

It is carried out here using vector K.

Using this vector field, the current appears in the vector electric potential formulation, which
is now written as follows:

rot 1
σ

rotTI = −rot 1
σ

rot (I K) (3.19)

It has been shown [Henneron 2004] that the expression for the voltage is given by:

V =
∫

Dc

E .N dDc (3.20)

3.3.1.2 Imposition of the voltage

To impose the voltage in this formulation, we use equation 3.20 which is added to the original
system of equations 3.19. The current then becomes an unknown and the system to be solved is
written:

rot 1
σ

rotTI + rot 1
σ

rot (I K) = 0∫
Dc

E .N dDc = V
(3.21)

3.3.2 Scalar electric potential formulation φ

The electric field E is here broken down into two terms: a source field ES and an unknown field
EI such that:

E = ES + EI

= −gradφS − gradφI

(3.22)

This source field allows the introduction of voltage V into the expression for the total electric
field.

3.3.2.1 Imposition of the voltage

This source electric field has the same properties as field β at a given V. It is thus written as
follows:

ES = β V (3.23)
It is then verified that:



3.4. MAGNETOSTATICS 29

∫
γ

ES .dl =
∫

γ

(β V ) .dl = V (3.24)

For the electric field EI it is verified that:∫
γ

EI .dl = 0 (3.25)

By using potential α in the expression for the source field, we establish the electric potential
formulation φ at imposed voltage:

divσ gradφI = −divσ gradα V (3.26)

A power balance provides the expression for current I in which the vector field β appears:

I =
∫

Dc

β .J dDc (3.27)

3.3.2.2 Imposition of the current

To impose the current with the scalar potential formulation, we use equation 3.27. We then
express β and J as a function of α and the scalar electric potential φI . The scalar electric
potential formulation with an imposed current is written:

divσgradφI + divσgradα V = 0∫
Dc

gradα . σgrad (φI + αV ) dDc = I
(3.28)

The voltage thus becomes an unknown when the current is imposed.

3.3.3 Review of imposing overall values in electrokinetics
Imposing a current with the vector potential formulation and a potential difference with the scalar
potential formulation is natural. In this case, the overall values are revealed by acting on the source
terms. Conversely, if we wish to impose a voltage with the vector potential formulation and a
current with the scalar potential formulation, it is necessary to add an equation derived from a
power balance, established using the vector fields N or β.

The table (see Table 3.1) summarises the two potential formulations used in electrokinetics
with the imposition of overall electrical values.

These vector fields can be used on systems that require the consideration of several electrical
sources (currents and/or voltages). Several electric potential differences and several current sources
can be defined according to the values to be determined.

3.4 Magnetostatics

3.4.1 Formulation A
3.4.1.1 Imposition of a flux

The magnetic induction is broken down into two terms: a source term Bs and an unknown term
Bi such that:
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Formulations Imposition de la tension Imposition du courant

φ divσgrad (φI + α V ) = 0
divσgrad (JI + α V ) = 0∫

Dc

β .J dDc = I

T
rot 1

σ
rot (TI + I K) = 0∫

Dc

E .N dDc = V
rot 1

σ
rot (TI + I K) = 0

Table 3.1: Imposition of overall values in electrokinetics

B = Bs + Bi

The source term is expressed as a function of an N or K vector field and the imposed flux ϕ:

Bs = Nϕ = rot Kϕ (3.29)

The unknown field Bi allows introduction of the vector magnetic potential A such that:

Bi = rot A

The flux thus appears in the formulation through us of the source flux density Bs:

rot 1
µ

rot A = Js − rot 1
µ

rot Kϕ (3.30)

3.4.1.2 Imposition of a magnetic potential difference

By only taking into account overall magnetic values, ϵ and ϕ, the magnetic energy can be written
as follows:

W = 1
2

∫
D

H .B dτ = 1
2 ϵ . ϕ (3.31)

After development, the magnetic potential difference ϵ resulting from imposition of the flow is
written:

ϵ =
∫

D
H .N dτ (3.32)

By combining this equation with the formulation previously found, the magnetic potential
difference can be imposed:

rot 1
µ

rot A + rot 1
µ

rot Kϕ = Js∫
D

1
µ

rot (A + Kϕ) .N dτ = ϵ

(3.33)
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3.4.2 Formulation in Ω
3.4.2.1 Imposition of a flux

Still using equation 3.31, we can establish an expression for the flux as a function of the flux
density B and function β

ϕ =
∫

D
β .B dτ (3.34)

By analogy with the scalar electric potential formulation φ, equation 3.34 is used to impose
the magnetic flux using the scalar magnetic potential formulation Ω:

div µgrad Ω + div µgradα ϵ = div µHs∫
D

gradα . µ (grad (Ω + α ϵ) − Hs) dτ = ϕ
(3.35)

3.4.2.2 Imposition of a magnetic potential difference

In the case of scalar potential formulation, the imposition of a magnetic potential difference ϵ
requires the addition of a term HG which is expressed as a function of vector field β:∫

γ

HG .dl =
∫

γ

(β ϵ) .dl = ϵ (3.36)

where γ is some path connecting ΓH1 and ΓH2.

The magnetic field H is thus broken down into three terms:

• The unknown term HI that introduces the scalar magnetic potential Ω;

• The source term Hs relating to the presence of inductors;

• The term HG, which corresponds to the introduction of the overall value ϵ, the magnetic
potential difference.

H = HI + Hs + HG = −grad Ω + Hs − gradα ϵ (3.37)

The scalar magnetic potential formulation is then written:

div µgrad Ω = −div µgradα ϵ+ div µHs (3.38)

3.4.3 Review of imposing overall values in magnetostatics
As with the electrokinetic formulations, some values appear naturally in the formulations, such
as the flux for vector magnetic potential formulation A and the magnetic potential difference for
scalar magnetic potential formulation Ω. With the tools introduced, it is possible to use one or
the other to solve a problem involving imposed flux or imposed magnetic potential difference.

The table below groups the different magnetostatic formulations according to the values to be
imposed.
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Formulation Imposition of magnetic p.d. Imposition of flux

Ω div µ (grad (Ω + α ϵ) − Hs) = 0
div µ (grad (Ω + α ϵ) − Hs) = 0∫

D
β .B dτ = ϕ

A
rot 1

µ
rot A + rot 1

µ
rot Kϕ = Js∫

D

1
µ

rot (A + Kϕ) .N dτ = ϵ

rot 1
µ

rot A + rot 1
µ

rot Kϕ = Js

Table 3.2: Imposition of overall values in magnetostatics

3.5 Magnetodynamics
3.5.1 Formulation A - φ

3.5.1.1 Imposition of a voltage in a wound conductor

The current intensity denoted i is unknown. Coupling will take place using the magnetic induction
flux denoted ϕ. By using vector K, the expression for flux ϕ is [Le Menach 1999]:

ϕ =
∫

D
B .K dD (3.39)

The value of this expression over the conventional form for flux ϕ =
∫

B . ds is in its volume
integral. If the inductor geometry is complex, it is difficult to determine the 3D surface bounded
by the inductor. In this case, it is difficult to calculate flux B across such a surface. Since vector
field K must be calculated to determine the source field, this creates no additional difficulties. Its
general form facilitates coupling with the formulations. To do this, equation 3.39 is introduced
into Faraday’s law thus giving:

d

dt

∫
D

B .K dD = V −R i (3.40)

where:

• V represents the potential difference between the inductor terminals;

• R is the resistance of the inductor;

• i is the current flowing through the inductor.

In equation 3.39 the magnetic induction can be replaced by the curl of the vector magnetic
potential A. We then obtain an expression of the form rot A .K that can be transformed using
the properties of the vector operators. Given the boundary conditions on A and K, this gives:

ϕ =
∫

D
A . rot K dD (3.41)

By using equation 3.3, the magnetic induction flux in a winding made up of wound inductors
is then written:

ϕ =
∫

D
A .N dD (3.42)
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From this, the equations for imposed voltage on a wire conductor are deduced:

rot 1
µ

rot A − N i = 0

d

dt

∫
D

A .N dD +R i = V
(3.43)

3.5.1.2 Imposition of a flux and of a voltage in a solid conductor

For formulation A − φ, the overall values that appear naturally are: the magnetic flux (via the
introduction of the source term Nϕ) and the electric potential difference (using the source electric
field β V ). They appear by breaking down the magnetic induction B (3.44) and the electric field
E into source terms and unknown terms:

B = rot (A + Kϕ) (3.44)

E = −grad (φ+ αV ) − ∂ (A + Kϕ)
∂t

(3.45)

La formulation A − φ à flux et tensions imposés s’écrit alors :
rot 1

µ
rot (A + Kϕ) = −σ

(
∂ (A + Kϕ)

∂t
+ grad (φ+ αV )

)
div σ

(
∂ (A + Kϕ)

∂t
+ grad (φ+ αV )

)
= 0

(3.46)

3.5.1.3 Imposition of a magnetomotive force and an electric current in a solid con-
ductor

To determine or impose a magnetic potential difference ε as well as a current I, the power balance is
used, expressed as a function of either electrical values (3.47), or magnetic values (3.48) [Henneron
2004] [Henneron et al 2005]

Pe =
∫

Dc

E .J dτ +
∫

D

∂B
∂t

.H dτ = V i (3.47)

Pm =
∫

Dc

E .J dτ +
∫

D

∂B
∂t

.H dτ = ε
dφ

dt
(3.48)

The electrical power balance is established by considering a system powered by an electrical
source, and conversely, the magnetic power balance is established by considering a system powered
by a magnetic source.

From these power balances and using the method of mean weighted residuals, it can be shown
that current I and the magnetic potential difference ε can be expressed in the following forms
using the introduced source potentials:

I =
∫

Dc

β .J dτ (3.49)

ε =
∫

D
H .N dτ −

∫
Dc

K .J dτ (3.50)

Equation 3.49 is derived from the electric power balance 3.47 and equation 3.50 is derived
from the magnetic power balance 3.48. The potential formulation A −φ at current I and imposed
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magnetomotive force ε is obtained from the system of equations 3.46 by adding equations 3.49
and 3.50:



rot 1
µ

rot (A + Kϕ) = −σ
(
∂ (A + Kϕ)

∂t
+ grad (φ+ αV )

)
div σ

(
−∂ (A + Kϕ)

∂t
− grad (φ+ αV )

)
= 0∫

Dc

β . σ

(
−∂ (A + Kϕ)

∂t
− grad (φ+ αV )

)
dτ = I∫

D

1
µ

rot (A + Kϕ) .N dτ − ∂

∂t

∫
Dc

K . σ

(
−∂ (A + Kϕ)

∂t
− grad (φ+ αV )

)
dτ = ε

(3.51)

3.5.2 Formulation T - Ω
Unlike the previous formulation, the values that appear naturally in this formulation are the
current I and the magnetic potential difference ε.

3.5.2.1 Imposition of a magnetomotive force and an electric current in a solid con-
ductor

To show the current I and the magnetic potential difference ε in this formulation, the current
density J and the magnetic field H are broken down into source terms and unknown terms. These
values are expressed as a function of the fields N, K, β and α (3.52 and 3.53):

J = rot (K I + T) (3.52)

H = K I + T − grad (Ω + ε α) (3.53)

These source fields naturally show these overall values within the formulation T − Ω:

 rot 1
σ

rot (T + K I) = − ∂

∂t
µ (K I + T − grad (Ω + ε α))

div µ (K I + T − grad (Ω + ε α)) = 0
(3.54)

3.5.2.2 Imposition of a flux and a voltage

To impose or calculate a flux ϕ or a voltage V, the following equations are established from the
electric and magnetic power balances:

ϕ =
∫

D
β .B dτ (3.55)

V =
∫

Dc

E .N dτ + ∂

∂t

∫
D

K .B dτ (3.56)

These last equations lead to the formulation T − Ω at imposed flux and voltage by defining
the current I and the magnetic potential difference ε as unknowns:
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rot 1
σ

rot (T + K I) = − ∂

∂t
µ (K I + T − grad (Ω + ε α))

div µ (K I + T − grad (Ω + ε α)) = 0∫
D
β . µ (K I + T − grad (Ω + ε α)) dτ = ϕ∫

Dc

1
σ

rot (T + K I) .N dτ − ∂

∂t

∫
D

K . µ (K I + T − grad (Ω + ε α)) dτ = V

(3.57)

The vector fields N, K, β and function α are used to impose several values. Depending on the
nature of the problem and the formulation used, it is possible to impose either a magnetic flux ϕ
or an electric flux I.
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Chapter 4

Dealing with regions that are not
simply connected

Summary
If the geometry is not simply connected, the formulations given above are no longer valid. The
tools presented in the previous chapter, the vector fields N and K, allow clarification of the
formulations.

4.1 Electrokinetics
In the case of an electrokinetic problem, the presence of holes in the conductive domain leads to
modelling difficulties. The domain is no longer simply connected. Consider the conductive domain
shown in Figure 4.1 through which a current I is to flow via ΓE1 and ΓE2.

Figure 4.1: Electrokinetic example of a domain that is not simply connected

The scalar potential formulation φ does not require any special precautions to be taken to
resolve the problem. Indeed, whatever the non-closed path γ between ΓE1 and ΓE2, the condition
3.20 is validated.

V =
∫

Dc

E .N dDc (3.20)

37



38 CHAPTER 4. DEALING WITH REGIONS THAT ARE NOT SIMPLY CONNECTED

However, for the vector potential formulation, considering the paths C1, C2, C3, it must be
checked that:

I =
∫

C1

J .ds I1 =
∫

C2

J .ds I2 =
∫

C3

J .ds (4.1)

With:

I = I1 + I2 (4.2)
However, neither I1 nor I2 is known. To impose current I, a vector field N is used. It is defined

such that: ∫
C1

N I .ds = I (4.3)

To account for the fact that part of the current flows through the surfaces defined by C2 and
C3, a field N′ is used. This second source term, combined with a second current I ′, follows a hole
contour (see Figure 4.2) and validates the following conditions:∫

C1

N′ I ′.ds = 0
∫

C2

N′ I ′ .ds = −I ′
∫

C3

N I ′ .ds = I ′ (4.4)

Figure 4.2: Source terms N and N′ take the non-connectedness into account

Current I’ becomes an additional unknown in the problem. This second source term can be
compared to a short-circuited conductor with zero voltage imposed at its terminals. The voltage
is imposed by verifying equation 3.20

V =
∫

Dc

E .N dDc (3.20)

And it can be expressed as a function of vector field N′:∮
C

E .dl =
∫

Dc

E .N′ dτ = 0 (4.5)

The source fields N and N′ thus defined verify the following conditions:∫
C1

N I .ds =
∮

C1

K I .dl = I∫
C2

(N I + N′ I ′) .ds =
∮

C2

(K I + K′ I ′) .dl = I − I ′ = I1∫
C3

N′ I ′ .ds =
∮

C3

K′ I ′ .dl = I ′ = I2

(4.6)
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The boundary ΓJ is not simply connected but the source vector potentials K I and K′ I ′

perform the cut-out role previously defined.
In this configuration, the vector potential formulation is written:

rot 1
σ

rot (TI + K I + K′ I ′) = 0∫
Dc

1
σ

rot (TI + K I + K′ I ′) .N dτ = V1∫
Dc

1
σ

rot (TI + K I + K′ I ′) .N′ dτ = 0

(4.7)

Currents I and I ′ are two additional unknowns in this case.
If the system has several holes, a corresponding number of source terms are added, hence

increasing the number of additional equations 4.5 to be verified.

4.2 Magnetostatics
For cases where the domains under study are not simply connected, the use of vector fields K and
N is thus necessary. Cases that are not simply connected in magnetostatics are dealt with in the
same way as the electrokinetic case.
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Chapter 5

Weak form of the equations

Summary
The preceding chapters provided the main equations for each of the applications processed using
code_Carmel to date: electrokinetic, magnetostatic and magnetodynamic. To obtain systems that
are easier to use, a weak form of these equations is applied. This chapter details the transition
to weak form for all applications targeted by code_Carmel: magnetodynamic, magnetostatic and
electrokinetic.

5.1 Function spaces
Maxwell’s equations form a set of partial derivative equations to which different operators are
applied, notably curl rot, divergence div and gradient grad. To construct the variational formu-
lations for solving the equations, it is thus necessary to construct spaces in which these operations
are well defined.

5.1.1 Definitions
Let D be a bounded open set of R3 of boundary Γ and let n be the outgoing normal to D. L2 (D)
is the function space of the square-integrable scalar functions on D.

L2 (D) =
{

X measurable ;
∫

D
|X|2 < +∞

}
(5.1)

Further, L2 (D) is the function space of square-integrable vector fields on D.

L2 (D) =
{

X measurable ;
∫

D
∥X∥2 < +∞

}
(5.2)

where ∥.∥ is the conventional Euclidean norm of R3, associated with the usual scalar product
a .b of two vectors of R3, a and b.

More regular function sub-spaces, so that the energy retains a finite value, can be introduced
by adding a constraint relative to each operator (grad, rot and div).

H (grad,D) =
{
X ∈ L2 (D) ; gradX ∈ L2 (D)

}
H (rot,D) =

{
X ∈ L2 (D) ; rot X ∈ L2 (D)

}
H (div,D) =

{
X ∈ L2 (D) ; div X ∈ L2 (D)

}
In this case, the vector fields H, B, J, E belong to L2 (D).

41
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In H (grad,D), X is continuous at each point of D. However, for H (rot,D), the tangential
component of X is continuous on D, and for H (div,D), the normal component of X is continuous.

By introducing the boundary conditions, the spaces are restricted:

H0 (grad,D) =
{
X ∈ L2 (D) ; gradX ∈ L2 (D) ;X = 0|Γ

}
H 0 (rot,D) =

{
X ∈ L2 (D) ; rot X ∈ L2 (D) ; X × n = 0|Γ

}
H 0 (div,D) =

{
X ∈ L2 (D) ; div X ∈ L2 (D) ; X · n = 0|Γ

}
In this case, Γ represents the entire area containing D. In mathematics, the spaces described

above are conventional or “reasonable” [Costabel] as the boundary conditions are uniform. How-
ever, in physics we generally apply conditions of symmetry or impose boundary conditions on
fields of different types. The boundary condition is imposed on part of Γ, here denoted Γx. In
this case, solutions are sought in a wider space:

H0,x (grad,D) =
{
X ∈ L2 (D) ; gradX ∈ L2 (D) ;X = 0|Γx

}
H 0,x (rot,D) =

{
X ∈ L2 (D) ; rot X ∈ L2 (D) ; X × n = 0|Γx

}
H 0,x (div,D) =

{
X ∈ L2 (D) ; div X ∈ L2 (D) ; X · n = 0|Γx

}
We also introduce the function space L2 (T ) of square-integrable scalar functions over the time

interval T . This leads to introduction of the spaces 1:

S0
x (D) = H0,x (grad,D) ⊗ L2 (T )

S1
x (D) = H 0,x (rot,D) ⊗ L2 (T )

S2
x (D) = H 0,x (div,D) ⊗ L2 (T )

(5.3)

5.1.2 Property of continuous function spaces
In electromagnetism, when applying the gradient operator to a scalar field belonging toH (grad,D),
the resulting vector field is found in H (rot,D). The same is found when applying the curl operator
to a field belonging to H (rot,D). The resulting field is found in H (div,D)2.

Under these conditions, we can create a sequence of function spaces connected by the differential
operators. In addition, there are inclusion properties for function spaces as shown in [Bossavit
1993]:

Im (H (rot,D)) ⊂ Ker (H (div,D))
Im (H (grad,D)) ⊂ Ker (H (rot,D))

If domain D is simply connected and Γ is connected, the inclusions become equal:

Im (H (rot,D)) = Ker (H (div,D))
Im (H (grad,D)) = Ker (H (rot,D)) (5.4)

As these spaces include the H0 spaces described above, we can write:

H0 (grad,D) ⊂ H0,x (grad,D)

H 0 (rot,D) ⊂ H 0,x (rot,D)

H 0 (div,D) ⊂ H 0,x (div,D)
1Generally: L2 (D × Ω) ̸= L2 (D) × Ω, but L2 (D × Ω) = L2 (D) ⊗ L2 (Ω)
2it will be recalled that rot [grad] = 0 and div [rot] = 0.
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5.1.3 Electromagnetic fields
From these definitions and in the most general case (spectral version), it can be established that:

B ∈ S2
b (D)

J ∈ S2
h (Dc)

H ∈ S1
h (D)

E ∈ S1
b (Dc)

(5.5)

If the time dimension is not dealt with using the finite element method (more exactly the
Galerkin projection, in the case of the time-based version), set membership is restricted to:

B ∈ H 0,b (div,D)

J ∈ H 0,h (div,Dc)

H ∈ H 0,h (rot,D)

E ∈ H 0,b (rot,Dc)

(5.6)

5.1.4 Potential
Let us apply the same reasoning to scalar potentials and vector potentials. For the vector potential
A, defined from equation 2.29, it belongs to the same spaces as H.

A ∈ H 0,b (rot,D) (5.7)

However, if we apply the Coulomb gauge:

div A = 0

it must meet the conditions on both H (div,D) and H (rot,D). Finally, if we apply a gauge
of this type:

(A,grad ξ) = 0, ∀ξ ∈ H1
0 (D)

Then we must define two new spaces such that:

P0 (D) = {X ∈ H 0 (rot,D) ; (X,grad ξ) = 0; ∀ ξ ∈ H0 (grad,D)}

P0,x (D) = {X ∈ H 0,x (rot,D) ; (X,grad ξ) = 0; ∀ ξ ∈ H0,x (grad,D)}
(5.8)

Using these two new spaces, it is possible to establish that:

A ∈ P0 (D) (5.9)

or

A ∈ P0,x (D) (5.10)

But, unlike spaces H 0 (rot,D) and H 0,x (rot,D), it is not possible to establish that P0 (D) is
included in P0,x (D). Indeed, the gauge described in P0,x (D) requires that ξ must satisfy more
constraints because H 0,x (rot,D) contains H 0 (rot,D).

As a result, the space that satisfies:

{(X,grad ξ) = 0; ∀ξ ∈ H0,x (grad,D)}

contains the space:
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{(X,grad ξ) = 0; ∀ξ ∈ H0 (grad,D)}

The vector electric potential T has the same properties as A but exists only in Dc. Hence,
depending on the gauge used, this gives either:

T ∈ H 0,x (div,Dc) ∧ H 0,h (rot,Dc) for Coulomb gauge (5.11)

namely:

T ∈ P0 (Dc) for Coulomb gauge (5.12)

or:

T ∈ P0,h (Dc) for the other gauge (5.13)

Let us finish with the scalar potentials φ and Ω which are in H0,b (grad,Dc) and H0,h (grad,D)
respectively.

5.2 Projection principles
The formulations can be written as follows:

L (U) + f = 0 in D (5.14)

C (U) + fs = 0 on Γ (5.15)

where L and C are operators, while f and fs represent source terms which are generally known.

Applying the method of mean weighted residuals [Dhatt, Thouzot 1984] gives the following
integral forms depending on the type of test function. If time dependency is explicitly considered
(spectral version): ∫

T

∫
D

U . (L (U) + f) dD = 0 (5.16)

If this is not the case (time-based version):∫
D

U . (L (U) + f) dD = 0 (5.17)

If U is a solution of equation 5.16 or 5.17 and validates the boundary conditions defined by
5.15 for all test functions U then U is also a solution of equation 5.14. However, to reduce the
order of differentiation, we often use integration by parts. This results in the weak integral forms
that we are usually required to solve:∫

T

∫
D

U .LD (U) dD +
∫

T

∫
Γ

U .SL (U) dγ +
∫

T

∫
D

U f dD = 0 (5.18)

∫
D

U .LD (U) dD +
∫

Γ
U .SL (U) dγ +

∫
D

U f dD = 0 (5.19)

where LD and SL are operators.

To solve the formulations in their weak forms in the function spaces defined above, we then
take the test functions U equal to the interpolation functions (Galerkin method).
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5.3 Magnetodynamic problem
5.3.1 Formulation A - φ

We apply the previous method to magnetodynamic equations with a properly chosen test function
U .

5.3.1.1 Projection in space only

Formulation A - φ is written as follows without the time dimension (time-based version):

∫
D

U .

[
rot 1

µ
rotA + σ

(
∂A
∂t

+ gradφ
)]

dD =
∫

D
U .

[
Js + 1

µ
rot Br

]
dD (5.20)

First, a test function is chosen for the vector magnetic potential:

U = A′ A′ ∈ H 0,b (rot,D)

The first part is integrated by parts.∫
D

A′ . rot 1
µ

rotA dD =
∫

D

1
µ

rotA . rotA′ dD +
∫

∂D

(
1
µ

rotA × A′
)
. dγ (5.21)

where ∂D = Γ is the edge of D.

If the outgoing normal is denoted n, letting dγ = n . dγ, the previous equation becomes:∫
D

A′ . rot 1
µ

rotA dD =
∫

D

1
µ

rotA . rotA′ dD −
∫

Γ

(
1
µ

rotA × n
)
.A′ dγ (5.22)

Similarly, we can rewrite the term in Br∫
D

A′ .
1
µ

rotBr dD =
∫

D
rotA′.

1
µ

Br dD −
∫

Γ

(
1
µ

Br × n
)
.A′ dγ (5.23)

We then obtain, with H = 1
µ

rotA − 1
µ

Br:

∫
D

[
1
µ

rotA . rotA′ + σ

(
∂A
∂t

+ gradφ
)
.A′

]
dD =∫

D
Js .A′ dD +

∫
D

1
µ

rot A′ .Br dD +
∫

Γ
(H × n) .A′ dγ (5.24)

Recalling that (see paragraph 1.7):

Γ = ΓB ∪ ΓH

On ΓB , a uniform Dirichlet condition is imposed on A (and the same on A′):

A × n = 0 sur ΓB (5.25)

Thus, B .n = 0.

On ΓH , a uniform Neumann condition is imposed on A:

H × n = 0 (5.26)

Thus, by imposing a proper test function, the edge term (on Γ) is cancelled out.
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Secondly, a test function is chosen for the scalar electric potential:

U = gradφ′ φ′ ∈ H0,b (grad,Dc)

Given that:∫
D

gradφ′ .

[
rot 1

µ
rotA + σ

(
∂A
∂t

+ gradφ
)]

dD −
∫

Γ
gradφ′ . (n × H) dγ = 0

Hence:

∫
D
σ gradφ′ ·

(
∂A
∂t

+ gradφ
)
dD −

∫
Γ

gradφ′ .

(
n ×

(
1
µ

rotA
))

dγ = 0 (5.27)

The surface term is:∫
Γ

gradφ′ .

(
n ×

(
1
µ

rotA
))

dγ = −
∫

Γ
φ′ div

(
n × 1

µ
rotA

)
dγ

=
∫

Γ
φ′ rot

(
1
µ

rotA
)

· ndγ

= −
∫

Γ
φ′ σ

(
∂A
∂t

+ gradφ
)

· ndγ

It is recalled that:

Jind = σE = −σ
(
∂A
∂t

+ gradφ
)

As we have demonstrated above, the surface integrals disappear. This amounts to a strong
imposition of boundary conditions on Γb (E × n = 0 and B .n = 0) and weak imposition on Γh

(H × n = 0 and J .n = 0).

Hence, equation (5.27) is written:∫
D
σ gradφ′ ·

(
∂A
∂t

+ gradφ
)
dD = 0 (5.28)

The first equation corresponds to the flux conservation of the current density and the second
to Ampère’s circuital law.

The system to be solved in magnetodynamics without time projection is as follows:

Find A ∈ P0,x (D) and φ ∈ H0,b (grad,Dc) such that ∀A′ ∈ H 0,b (rot,D) , ∀φ′ ∈ H0,b (grad,Dc)

∫
D

[
1
µ

rotA′ . rotA + σA′ .

(
∂A
∂t

+ gradφ
)]

dD =
∫

D
Js .A′ dD +

∫
D

1
µ

rot A′ .Br dD∫
D
σ gradφ′ .

(
∂A
∂t

+ gradφ
)
dD = 0

(5.29)
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5.3.1.2 Projection in space and time

If the time dimension is to be dealt with (spectral version), the weak formulation in A - φ is
written as follows, according to equation 5.20:

∫
T

∫
D

U .

[
rot 1

µ
rotA + σ

(
∂A
∂t

+ gradφ
)]

dD =
∫

T

∫
D

U .

[
Js + 1

µ
Br

]
dD (5.30)

The first part is integrated by parts.

∫
T

∫
D

U . rot 1
µ

rotA dD =
∫

T

∫
D

1
µ

rotA . rotU dD +
∫

T

∫
∂D

(
1
µ

rotA × U
)
. dγ (5.31)

where ∂D = Γ is the edge of D.

If the outgoing normal is denoted n, letting dγ = n . dγ, the previous equation becomes:

∫
T

∫
D

U . rot 1
µ

rotA dD =
∫

T

∫
D

1
µ

rotA . rotU dD −
∫

T

∫
Γ

(
1
µ

rotA × n
)
.U dγ (5.32)

Similarly, we can rewrite the term in Br:∫
T

∫
D

U .
1
µ

rotBr dD =
∫

T

∫
D

1
µ

rotU .Br dD −
∫

T

∫
Γ

(
1
µ

Br × n
)
.U dγ (5.33)

This gives:

∫
T

∫
D

[
1
µ

rotA . rotU + σ

(
∂A
∂t

+ gradφ
)
.U
]
dD =∫

T

∫
D

Js .U dD +
∫

T

∫
D

1
µ

Br . rotU dD +
∫

T

∫
Γ

(H × n) .U dγ (5.34)

First, a test function is chosen for the scalar electric potential:

U = gradφ′ φ′ ∈ S0
E

Hence: ∫
T

∫
D

gradφ′ .

[
σ

(
∂A
∂t

+ gradφ
)]

dD −
∫

T

∫
Γ

gradφ′ . (n × H) dγ =∫
T

∫
D

gradφ′ .Js dD

We use the equation:∫
T

∫
D

gradφ′ .v dD = −
∫

T

∫
D
φ′ divv dD +

∫
T

∫
Γ
φ′ (v .n) dγ (5.35)

This gives: ∫
T

∫
D
σ

(
A
∂t

+ gradφ
)
.gradφ′ dD =

−
∫

T

∫
D

divJs φ
′ dD +

∫
T

∫
Γ
φ′ (Js .n) dγ

(5.36)
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We have:

divJs = 0 (5.37)

The edge integral is cancelled out by the choice of test function.

This gives: ∫
T

∫
D
σ

(
A
∂t

+ gradφ
)
.gradφ′ dD = 0 (5.38)

Secondly, a test function is chosen for the vector magnetic potential:

U = A′ A′ ∈ S1
E

This leads to the equation:∫
T

∫
D

[
µ−1 rotA . rotA′ + σ

(
∂A
∂t

+ gradφ
)
.A′
]
dD =∫

T

∫
D

Js .A′ dD +
∫

T

∫
D
µ−1 Br . rotA′ dD +

∫
T

∫
Γ

(
HΓ × n

)
.A′ dγ

(5.39)

The system to be solved in magnetodynamics with time projection is as follows:

Find A ∈ S1
E and φ ∈ S0

E such that ∀A′ ∈ S1
E , ∀φ′ ∈ S0

E∫
T

∫
D

[
µ−1 rotA . rotA′ + σ

(
∂A
∂t

+ gradφ
)
.A′
]
dD =∫

T

∫
D

Js .A′ dD +
∫

T

∫
D
µ−1 Br . rotA′ dD +

∫
T

∫
Γ

(
HΓ × n

)
.A′ dγ∫

T

∫
D
σ

(
A
∂t

+ gradφ
)
.gradφ′ dD = 0

(5.40)

Remark 5.3.1 The values A, φ, A′ and φ′ are time dependent.

5.3.2 Formulation T-Ω
5.3.2.1 Projection in space only

The magnetodynamic system of equations with the formulation T-Ω is given below (in the case of
the time-based version of code_Carmel):

rot 1
σ

rotT (x, t) + ∂

∂t
µ (T (x, t) − grad Ω (x, t)) =

− rot 1
σ

rotHs (x, t) − ∂

∂t
(µHs (x, t) + Br) (2.36)

divµ (T (x, t) − grad Ω (x, t)) = −div (µHs (x, t) + Br) (2.37)

The first expression is multiplied by a test function U . Formulation T-Ω is written as follows
without the time dimension (time-based version):
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∫
D

U .

[
rot 1

σ
rotT + ∂

∂t
µ (T − grad Ω)

]
dD =

−
∫

D
U .

[
rot 1

σ
rotHs + ∂

∂t
(µHs + Br)

]
dD (5.41)

hence:

∫
D

[
1
σ

rotT . rotU + U .
∂

∂t
µ (T − grad Ω)

]
dD −

∫
∂D

(
1
σ

rotT × U
)
.n dγ =

−
∫

D

[
1
σ

rotHs . rotU + U .
∂

∂t
(µHs + Br)

]
dD +

∫
∂D

(
1
σ

rotHs × U
)
.n dγ (5.42)

and further:

∫
D

[
1
σ

rotT . rotU + U .
∂

∂t
µ (T − grad Ω)

]
dD −

∫
∂D

(
1
σ

J × n
)
.U dγ =

−
∫

D

[
1
σ

rotHs . rotU + U .
∂

∂t
(µHs + Br)

]
dD (5.43)

If we initially take:

U = T ′ avec T ′ ∈ H0,h (rot,D) (5.44)

Then:

∫
D

[
1
σ

rotT . rotT′ + T′ .
∂

∂t
µ (T − grad Ω)

]
dD −

∫
∂D

(E × n) .T′ dγ =∫
D

[
1
σ

rotHs . rotT′ + T′ .
∂

∂t
(µHs + Br)

]
dD (5.45)

If we secondly take:

U = grad Ω′ avec Ω′ ∈ H0,h (grad,D) (5.46)

Then:

∫
D

[
grad Ω′ .

∂

∂t
µ (T − grad Ω)

]
dD −

∫
∂D

1
σ

rotT × grad Ω′ dγ =∫
D

[
grad Ω′ .

∂

∂t
(µHs + Br)

]
dD −

∫
∂D

1
σ

rotHs × grad Ω′ dγ (5.47)

Hence:

∫
D

[
grad Ω′ .

∂

∂t
µ (T − grad Ω)

]
dD −

∫
∂D

(E × n) .grad Ω′ dγ =∫
D

[
grad Ω′ .

∂

∂t
(µHs + Br)

]
dD (5.48)
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The equations to be solved are thus:

Find T ∈ P0,x (D) and Ω ∈ H0,h (grad,D) such that ∀T′ ∈ H 0,h (rot,D) , ∀Ω′ ∈ H0,h (grad,Dc)

∫
D

[
1
σ

rotT . rotT′ + T′ .
∂

∂t
µ (T − grad Ω)

]
dD −

∫
∂D

(E × n) .T′ dγ =∫
D

[
1
σ

rotHs . rotT′ + T′ .
∂

∂t
(µHs + Br)

]
dD (5.49)

∫
D

[
grad Ω′ .

∂

∂t
µ (T − grad Ω)

]
dD −

∫
∂D

(E × n) .grad Ω′ dγ =∫
D

[
grad Ω′ .

∂

∂t
(µHs + Br)

]
dD (5.50)

5.3.2.2 Projection in space and time

And, with the time dimension (with the spectral version of code_Carmel, for the moment we have
Br = 0), this gives:

∫
T

∫
D

U .

[
rot 1

σ
rotT + ∂

∂t
µ (T − grad Ω)

]
dD =

−
∫

T

∫
D

U .

[
rot 1

σ
rotHs+ ∂

∂t
(µHs + Br)

]
dD (5.51)

Hence:

∫
T

∫
D

[
1
σ

rotT . rotU + U .
∂

∂t
µ (T − grad Ω)

]
dD −

∫
∂D

(
1
σ

rotT × U
)
.n dγ =

−
∫

T

∫
D

[
1
σ

rotHs . rotU + U .
∂

∂t
(µHs + Br)

]
dD −

∫
∂D

(
1
σ

rotHs × U
)
.n dγ = (5.52)

This approach is comparable to that in the preceding paragraph. The equations to be solved
are thus:

Find T ∈ S1
b (D) and Ω ∈ S0

h (D) such that ∀T′ ∈ S1
b (D) , ∀Ω′ ∈ S0

h (D)

∫
T

∫
D

[
1
σ

rotT . rotT′ + T′ .
∂

∂t
µ (T − grad Ω)

]
dD −

∫
T

∫
∂D

(E × n) .T′ dγ =∫
T

∫
D

[
1
σ

rotHs . rotT′ + T′ .
∂

∂t
(µHs + Br)

]
dD (5.53)

∫
T

∫
D

[
gradΩ′ .

∂

∂t
µ (T − grad Ω)

]
dD −

∫
T

∫
∂D

(E × n) .gradΩ′ dγ =∫
T

∫
D

[
gradΩ′ .

∂

∂t
(µHs + Br)

]
dD (5.54)
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5.4 Magnetostatic problem

Here, the terms corresponding to induced currents disappear.

5.4.1 Formulation A

5.4.1.1 Projection in space only

The integral form of the formulation to be solved is thus (see the strong form of equation 2.22):

∫
D

U .

[(
rot 1

µ
rotA − Js − 1

µ
rotBr

)]
dD = 0 (5.55)

Hence:

∫
D

1
µ

rotU . rotA dD −
∫

Γ
U .

(
n × 1

µ
rot A

)
dΓ =

∫
D

U .Js dD +
∫

D

1
µ

U . rot Br dD (5.56)

If we take:

U = A′ avec A′ ∈ H0,b (rot,D) (5.57)

Then the system to be solved is written:

∫
D

1
µ

rotA′ . rotA dD −
∫

Γ
A′ .

(
n × 1

µ
rot A

)
dΓ =

∫
D

A′ .Js dD +
∫

D

1
µ

A′ . rot Br dD (5.58)

By integrating by parts:

∫
D

1
µ

A′ . rot Br dD =
∫

D

1
µ

rot A′ .Br dD +
∫

Γ

1
µ

A′ . (n × Br) dD (5.59)

The equation becomes:

∫
D

1
µ

rotA′ . rotA dD −
∫

Γ
A′ . (n × H) dΓ =

∫
D

A′ .Js dD +
∫

D

1
µ

rot A′ .Br dD (5.60)

The boundary Γ is the union of a boundary portion where the normal component of the flux
density is zero (ΓB) and a portion where the tangential component of the magnetic field is zero
(ΓH).

With the proper choice of test function, the edge term is cancelled out.

This thus reduces to:

Find A ∈ P0,x (D) such that ∀A′ ∈ H 0,b (rot,D)

∫
D

1
µ

rotA′ . rotA dD =
∫

D
A′ .Js dD +

∫
D

1
µ

A′ . rot Br dD (5.61)
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5.4.1.2 Projection in space and time

By removing the terms associated with induced currents and the conductive domain in equation
5.40, the system to be solved becomes:

Find A ∈ S1
E such that ∀A′ ∈ S1

E

∫
T

∫
D

[
µ−1 rotA . rotA′] dD =∫

T

∫
D

Js .A′ dD +
∫

T

∫
D
µ−1 Br . rotA′ dD +

∫
T

∫
ΓH

(
HΓ × n

)
.A′ dγ (5.62)

5.4.2 Formulation Ω
5.4.2.1 Projection in space only

The integral form of the formulation to be solved is thus (see equation 2.23):∫
D

U [divµ (Hs − gradΩ)] dD = −
∫

D
U div Br dD (5.63)

where Hs, which represents the source field, is calculated from Js.
Hence:

∫
D
µ (grad U .grad Ω − grad U .Hs) dD +

∫
Γ

U (µgrad Ω) dγ = −
∫

D
U div Br dD (5.64)

However: ∫
D

U div Br dD = −
∫

D
grad U .Br dD (5.65)

We take:

U = Ω′ avec Ω′ ∈ H0,h (grad,D) (5.66)
Thus, the problem is reduced to:

Find Ω ∈ H0,h (grad,D) such that ∀Ω′ ∈ H0,h (grad,Dc)

∫
D
µ (grad Ω′ .grad Ω − grad Ω′ .Hs) dD +

∫
Γ

Ω′ (µgrad Ω) dγ =
∫

D
grad Ω′ .BrdD (5.67)

5.4.2.2 Projection in space and time

The magnetodynamic system of equations with the formulation T-Ω is given below (with the
spectral version of code_Carmel, for the moment we have Br = 0):

rot 1
σ

rotT (x, t) + ∂

∂t
µ (T (x, t) − grad Ω (x, t)) =

− rot 1
σ

rotHs (x, t) − ∂

∂t
(µHs (x, t) + Br) (2.36)



5.5. ELECTROKINETIC PROBLEM 53

divµ (T (x, t) − grad Ω (x, t)) = −div (µHs (x, t) + Br) (2.37)

In magnetostatics, it becomes:

−divµ (grad Ω (x)) = −div (µHs (x) + Br) (5.68)

This expression is multiplied by a test function U . The formulation Ω is written as follows
(spectral version):∫

T

∫
D

U divµ (grad Ω (x)) dD =
∫

T

∫
D

U div (µHs (x) + Br) dD (5.69)

Hence:

−
∫

T

∫
D
µ grad U grad Ω (x) dD =∫

T

∫
D

U div (µHs (x) + Br) dD −
∫

T

∫
∂D

U µgrad Ω (x) . d∂D (5.70)

And further:

−
∫

T

∫
D
µ grad U .grad Ω (x) dD = −

∫
T

∫
D

(µHs (x) + Br) .grad U dD

+
∫

T

∫
∂D

U (µHs (x) + Br) . d∂D −
∫

T

∫
∂D

U µgrad Ω (x) . d∂D (5.71)

This thus reduces to:

−
∫

T

∫
D
µ grad U .grad Ω (x) dD = −

∫
T

∫
D

(µHs (x) + Br) .grad U dD+∫
T

∫
∂D

U µH . d∂D (5.72)

For the test function, we take:

U = Ω′ avec Ω′ ∈ H0,h (grad,D) (5.73)

As a result, the system to be resolved is:

Find Ω ∈ H0,h (grad,D) such that ∀Ω′ ∈ H0,h (grad,D)

−
∫

T

∫
D
µ grad Ω′ .grad Ω (x) dD = −

∫
T

∫
D

(µHs (x) + Br) .grad Ω′ dD+∫
T

∫
∂D

Ω′ µH . d∂D (5.74)

5.5 Electrokinetic problem
Here, the time dimension disappears. This concerns only the time-based version.
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5.5.1 Formulation φ

The scalar electric potential equation for the electrokinetic formulation is given below:

divσ gradφ = divσ gradα V (3.26)

By multiplying both sides of this equation by a test function U , the integral form of the
formulation is thus: ∫

Dc

U [divσ (gradφ+ gradαV )] dDc (5.75)

The weak form of the equation is:

∫
Dc

σ grad U .gradφdDc +
∫

Γ
U (σ gradφ) .n dΓ = −

∫
Dc

σ grad U .gradαV dDc (5.76)

A test function is chosen for the scalar electric potential:

U = φ′ φ′ ∈ H0,b (grad,Dc)

It is recalled that Γ = Γh ∪ Γb. By its definition in φ′ ∈ H0,x (grad,Dc) the potential φ′ is zero
on Γb. We thus naturally impose E × n = 0 on Γb in the strong sense. In addition, by eliminating
the calculation of the surface integral on Γh, we impose J .n = 0 in the weak sense.

The weak form of the equation to be solved is thus:

Find φ ∈ H0,b (grad,Dc) such that ∀φ′ ∈ H0,b (grad,Dc)∫
Dc

σ gradφ′ .gradφdD = −
∫

Dc

σ gradφ′ .gradαV dDc (5.77)

5.5.2 Formulation T
The integral form of the formulation to be solved is thus:∫

D
U .

[
rot 1

σ
rot (T + Hs)

]
dD = 0 (5.78)

The weak form is obtained by integration by parts:∫
D

1
σ

rot U . rot (T + Hs) dD −
∫

Γ
U . (n × E) dΓ = 0 (5.79)

If we take:

U = T′ avec T′ ∈ H0,h (rot,D) (5.80)

Thus, with Γ = Γh ∪ Γb, on Γh we have T′ = 0, hence we strongly impose J .n|Γb
= 0.

Conversely, by eliminating the surface integral on Γb, we ensure E × n = 0 in the weak sense.
As a result, the problem to be solved is:

Find T ∈ H0,h (rot,D) such that ∀T′ ∈ H0,h (rot,D)∫
D

1
σ

rotT′ . rot (T + Hs) dD = 0 (5.81)



Chapter 6

Coupling with external circuits

Summary
This chapter is devoted to methods taking account of electrical circuits external to the finite
element problem. Before presenting these methods, however, certain limitations or assumptions
should be mentioned. Coupling with an electrical circuit is functional in the following cases:

• Linear or non-linear materials;

• Vector magnetic potential formulation;

• Conductive domains not coupled with an external circuit;

• Taking motion into account;

• Imposition of voltages in electrical circuits.

The potential formulations A and A −φ are first recalled. A circuit resolution method will be
presented and these two models (magnetic and electric) will be coupled.

6.1 Breakdown of the source current
When a device is powered by nI wound inductors, the total source current density Js (X, t) in
broken down in the form:

Js (X, t) =
nI∑

k=1
Nk (x) ik (t) (6.1)

where Nk (x) (m−2) is the coil density associated with inductor k, k = 1, ..., nI and ik (t) (A)
is the current flowing inside. Nk (x) can be defined by:

Nk (x) = ns
k

|Σk|
nk (x) (6.2)

with |Σk| the surface generated by the inductor, ns
k its number of coils and nk the normal unit

vector at the cross-section of the coil.
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6.2 Circuit equation
We can impose either the current flowing through the wound inductors or the voltage at their
terminals. In the first case, the current is the premise of the problem. In the second, the current
flowing inside becomes an unknown in the problem.

It is assumed that a voltage vk (t) is imposed on the inductor terminals k in a circuit containing
a series voltage source vk (t) with resistance Rk and inductance Lk. Rk represents the resistance
of the winding and possibly an external resistance, while Lk models for magnetic leaks associated
with non-modelled winding overhang and/or an external inductance. Finally, the current ik (t) in
this circuit is a solution of:

∂ϕk (t)
∂t

+ Lk
∂ik (t)
∂t

+Rk ik (t) = vk (t) (6.3)

where ϕk is the magnetic flux captured by the coil k. This is the term that will be used to
couple the circuit equations with the magnetoquasistatic problem.

6.2.1 Expression for the magnetic flux
The flux generated by the inductor is expressed by definition as:

ϕk = ns
k

∫
Sk

(B . dSk) (6.4)

where Sk is the surface generated by the contour of the coil k as shown in Figure 6.1.

Figure 6.1: Wound inductor

Applying Stokes’ theorem and using B = rot A, we have:

ϕk = ns
k

∮
lk

(A . dlk) = ns
k

∮
lk

(A .Nk) dlk (6.5)

where lk is the closed contour bounding the surface Sk, again shown in Figure 6.1. Using the
definition of Nk (see equation 6.2), we finally find:

ϕk =
∫

Vk

(A .Nk) dVk (6.6)

where: Vk =
∮

lk

|Σk| dlk is the inductor volume.

6.2.2 Formulation of the electrical problem
This section deals with linear circuits consisting of passive dipoles (R, L and C) and voltage
sources. Current sources are not taken into account, as the current can be directly applied to the
wound inductors in the electromagnetic problem.



6.2. CIRCUIT EQUATION 57

6.2.3 Mesh current method
To couple the electromagnetic problem with the circuit problem, the mesh current method has
been chosen. Initially, the finite element model is not involved.

Consider the circuit shown in Figure 6.2 which represents a star coupling of three phases feeding
loads R, L and C.

Figure 6.2: RLC circuit

This circuit has:

• 12 dipoles (which can also be called branches or edges);

• 11 nodes (in the sense of electrical circuits and graphs).

There are thus “bcir” independent loops such that:

ncir − acir + bcir = 1 (6.7)
With:

• ncir: the number of nodes in the circuit;

• acir: the number of branches in the circuit;

• bcir: the number of independent loops in the circuit.

The number of loops to be considered in the example is thus 2. Initially, they are chosen
arbitrarily.

For each loop, Kirchhoff’s voltage law can be written as follows:

KM U = 0 (6.8)
With:

U = US + UR + UL + UC (6.9)
Where:

• US is the source voltage vector;
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• UR is the resistive dipole voltage vector;

• UL is the inductive dipole voltage vector;

• UC is the capacitive dipole voltage vector;

and KM is the branch–mesh incidence matrix (or loop of size bcir × acir such that:

• KM (bcir, acir) = 1, if the loop orientation bcir is in the same direction as the dipole voltage
acir;

• KM (bcir, acir) = −1, if the loop orientation bcir is in the opposite direction to the dipole
tension acir;

• KM (bcir, acir) = 0, otherwise.

In the case shown in Figure 6.2, the matrix KM is:

KM =
[

1 −1 −1 −1 1 1 1 −1 0 0 0 0
0 0 0 0 1 −1 −1 −1 1 1 1 −1

]
(6.10)

The current I through each dipole can be written according to the previously determined
fictitious currents Jcir flowing in the loops:

I(n) = KMT Jcir (n) (6.11)

The following notation is adopted:

• I(n) is the current at the time iteration t;

• I(n−1) is the current at the time iteration t− ∆t;

With these conventions, equation 6.9 becomes:

U(n) = US (n) +RI(n) + L
I(n) − I(n−1)

∆t + ∆t
C
I(n) + UC(n−1) (6.12)

where:

IC(n) = C
UC(n) − UC(n−1)

∆t (6.13)

We then resolve the following system:

KM

[
R + L

∆t + ∆t
C

]
KMT Jcir (n) = −KM

(
US + UC(n−1)

)
+KM

L

∆t KM
T Jcir (n−1) (6.14)

The matrices R, L and C are squares of size equal to the number of dipoles. They contain the
value of the corresponding dipole on their diagonal, according to the numbering of the branches
of the circuit. An example is shown below:
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R + L + C =



0 0 0 0 0 0 0 0 0 0 0 0
0 R1 0 0 0 0 0 0 0 0 0 0
0 0 L1 0 0 0 0 0 0 0 0 0
0 0 0 C1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 R2 0 0 0 0 0 0
0 0 0 0 0 0 L2 0 0 0 0 0
0 0 0 0 0 0 0 C2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 R3 0 0
0 0 0 0 0 0 0 0 0 0 L3 0
0 0 0 0 0 0 0 0 0 0 0 C3


6.2.4 Method for calculating the tree of the electrical circuit
Closing currents are determined in two steps. Figures 6.3 and 6.4 illustrate the methods used.

1. Calculating a tree

2. Calculating closing currents

(a) Sample circuit (b) Graph of the circuit and tree search path

(c) Tree (solid line) and co-tree (dotted line)

Figure 6.3: Calculating a circuit tree

From the graph of the circuit (see Figure 6.3a), the various branches are crossed to construct
a spanning tree. This spanning tree must link all nodes of the graph without forming a loop.
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By crossing the branches one by one, it is possible to form a loop without having passed
through all the branches. In this case, the method is to go back one branch and look for another
possible path (see Figure 6.3b).

This process continues until a spanning tree is obtained (see Figure 6.3c).

Together with this tree, a co-tree is also calculated. In our example, the co-tree is made up of
two branches. This number of branches is equal to the number of independent loops (see equation
6.7).

The calculation of mesh currents is carried out by crossing the spanning tree, starting with the
branches of the co-tree. Figure 6.4 shows two pathways for mesh currents.

Figure 6.4: Determining independent current loops

6.3 Coupling solid conductors in code_Carmel spectral ver-
sion

In a solid conductor, the voltage between two terminals or surfaces S1 and S2, assumed to be
electrical equipotentials, is the difference between the potential levels of S1 and S2, i.e. U =
ϕS2 − ϕS1 .

It will be recalled that with the vector magnetic potential formulation, the current density is
expressed as:

J = −σ
(

gradφ+ ∂A
∂t

)
(6.15)

The weak expression of current I can be written:

I =
∫

J .grad ŵ0 dS = −
∫
σ

(
gradφ+ ∂A

∂t

)
.grad ŵ0 dS (6.16)

where: ŵ0 is a nodal shape function restricted to cross-section S of the conductor.

When the solid conductor is connected to an external circuit, the voltage U at the terminals
of the conductor and the current flowing through it are unknown and imposed by the external
circuit. The coupling between the external circuit and the solid conductor will be performed using
these two overall values, U and I.

We start by writing the two systems to be coupled.
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Figure 6.5: Model of a bar made up of two pieces, electrically insulated with an imperfect insulator

If the voltage at the conductor terminal is imposed, then the matrix system to be resolved is
written:  RotRot+WW WGradT 0

WGrad GradGrad NT

0 N 0

 Ainc

φinc

I

 =

 0
0
U

 (6.17)

With N a vector of size equal to the number of scalar unknowns ϕ, zero everywhere except at
the index of the unknown ϕS1 where it is -alpha and the index of ϕS2 where it is +alpha.

The matrix system of the external circuit is constructed using circuit analysis methods. It is
known that in electrical formulation A−φ, closing current analysis is appropriate for the coupling
of wound inductors (conductors without eddy currents) while nodal voltage circuit analysis is the
most natural for solid inductors. Closing current analysis is already implemented in the spectral
version of code_Carmel. For reasons of ease of maintenance and implementation of the spectral
version, nodal voltage circuit analysis is not being developed.

However, closing current circuit analysis as developed poses problems when considering solid
conductors. To overcome this difficulty, we have modified the closing current analysis by incorpo-
rating fictitious voltage sources corresponding to each solid conductor. Hence, the matrix system
of the external electrical circuit is written: Y11 · · · Y1m

... . . . ...
Ym1 · · · Lmm

 I = Vs +N φinc (6.18)

With:

• m the number of passive components (resistors, chokes, capacitors) in the external electrical
circuit;

• Y is identical to an impedance;

• I is the closing current vector;

• Vs is the voltage source vector imposed in the external circuit.
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Part II

Overview of space and time
discretisation
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Chapter 7

Discretisation spaces

Summary
The formulations developed in the preceding chapters cannot be solved analytically due to the
complex geometries of the devices. We must use numerical methods to solve these equations.
Hence, the problem must be discretised. The local electromagnetic values, which are actually the
unknowns of the problem, are defined in series of function spaces. Hence, we must discretise the
sequences of function spaces as well as the differential operators. To do this, we will define a
discrete structure similar to that of the continuous domain presented in the preceding chapters.

This is done using the Finite Element Method (FEM), which generates a double discretisation.
The first consists in breaking down the domain under study (space discretisation) into small
elements of simple shape (tetrahedra, prisms, hexahedra or pyramids). The second discretisation
is of the unknowns.

7.1 Interpolation spaces
7.1.1 Overview
In FEM, the continuous domain D is partitioned into sub-domains of simple shapes in which
Maxwell’s equations are approached numerically. This means a finite element mesh consisting of
n0 nodes, n1 edges, n2 facets , and n3 volume elements.

There is a relationship (the Euler-Poincaré formula) between these numbers:

n0 − n1 + n2 − n3 = ξ (7.1)
where ξ is the Betti number which is equal to 1 plus the number of loops minus the number of

holes in the meshed domain.

7.1.2 Shape functions
7.1.2.1 Nodal function

The mesh vertices, at each node n, are associated with continuous scalar nodal functions w0
n.

Their expression depends on the type of element used. With nodal functions, we can verify the
relationship at each point of the domain: ∑

n∈Nh

w0
n = 1 (7.2)

All mesh functions w0
n generate a space of finite dimension denoted W0. If a function U belongs

to W0, this gives:
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U =
∑

n∈Nh

w0
n un (7.3)

un represents the value at node n of function U . Denoting Un the vector (un)n∈Nh
and Wn

the vector containing the interpolation functions at the nodes, equation 7.3 is expressed as follows:

U = Wn Un (7.4)

The properties of the interpolation functions w0
n require that the function U is continuous

across domain D.

7.1.2.2 Edge function

As shown in Figure 7.1, let there be an edge Anm formed by nodes Nn and Nm, to which we
associate the edge function w1

a.

Figure 7.1: Definition of the edge Anm

In the case of tetrahedra, we have [Bossavit 1993]:

w1
a = w0

n gradw0
m − w0

m gradw0
n (7.5)

where w0
n and w0

m are the nodal functions associated with nodes Nn and Nm.

The circulation of w1
a is equal to 1 along edge Anm and is zero on the other edges.

All of these functions w1
a generate the space of edge elements of finite dimension W1.

Let there be a vector U belonging to W1, thus giving

U =
∑

a∈Ah

w1
a ua (7.6)

ua represents the circulation of U along edge ’a’ defined by:

ua =
∫

a

U .dl (7.7)

Finally, at the interface between two elements, the tangential component of the value discretised
by the edge elements is preserved.
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Ni

Nj
Nk

Fijk

Figure 7.2: Definition of a triangular facet Fijk

7.1.2.3 Facet function

Depending on the type of mesh element, a facet can be triangular or quadrangular. By way of
example, a triangular facet is shown in Figure 7.2 .

The function wf associated with a triangular facet Fijk is written [Bossavit 1993]:

w2
f = 2

(
w0

k gradw0
i × gradw0

j + w0
j gradw0

k × gradw0
i + w0

i gradw0
j × gradw0

k

)
(7.8)

where w0
i , w0

j and w0
k are, respectively, the interpolation functions at nodes Ni, Nj and Nk.

We denote W2 the space of the facet elements generated by the functions w2
f .

By definition, the flux of the function w2
f is equal to 1 through facet ’f’ and zero on the other

mesh facets.

Taking a function U belonging to W2, it is expressed as follows:

U =
∑

f∈Fh

w2
f uf (7.9)

where uf represents the flux of vector U through facet ’f’, thus:

uf =
∫

f

U .n ds (7.10)

Since the normal component of the functions w2
f is continuous across each facet, hence the

normal component of a function belonging to W2 is also continuous.

7.1.2.4 Volume function

Finally, on each volume element v, we introduce the scalar function w3
v equal to the inverse of the

volume of the element on it, and zero on the other elements.

w3
v (x) = 1

vol (v) six ∈ v

w3
v (x) = 0 six /∈ v

(7.11)

where x is a point of D and vol (v) is the volume of the element considered.
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The space generated by the functions w3
v is denoted W3. A function U belongs to W3 if:

U =
∑

v∈Dh

w3
v uv (7.12)

In this expression, uv represents the volume integral of function U on element v.

7.1.3 Discrete spaces
As in the case of continuous domains, boundary condition restrictions can be introduced in Wi

spaces.

On Γh we have:

W0
h =

{
u ∈ W0, u|Γh

= 0
}

(7.13)

W1
h =

{
u ∈ W1,u × n|Γh

= 0
}

(7.14)

W2
h =

{
u ∈ W2,u · n|Γh

= 0
}

(7.15)

and, on Γb:

W0
b =

{
u ∈ W0, u|Γb

= 0
}

(7.16)

W1
b =

{
u ∈ W1,u × n|Γb

= 0
}

(7.17)

W2
b =

{
u ∈ W2,u · n|Γb

= 0
}

(7.18)

7.1.4 Potentials
Hence, there is a similar structure to that established in the continuous domain. We can thus
naturally define the interpolation spaces of the fields and potentials introduced above.

We thus have:

• the scalar potentials: Ω ∈ W0
h; φ ∈ W0

b .

• the fields E and H and the vector potentials: H ∈ W1
h; E ∈ W1

b ;A ∈ W1
b ; T ∈ W1

h.

• the current density J and the magnetic induction B: J ∈ W2
h; B ∈ W2

b .

7.2 Discrete differential operators
As in the case of continuous function spaces, discrete operators can be used to establish a link
between nodes, edges, facets and mesh elements (primal and dual).

In fact, these are the incidence matrices introduced by A. Bossavit. To illustrate these matrices,
we will deal with the case of the hexahedron presented in Figure 7.3. It should be noted that the
orientations are chosen arbitrarily on the primal mesh, while the orientation of the dual mesh is
deduced from the orientation of the primal mesh.
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Figure 7.3: Oriented hexahedron

7.2.1 The discrete gradient Gan.
The discrete form of the gradient is the edge–node incidence matrix that connects all primal nodes
and all primal edges of the mesh. Its size corresponds to the number of edges and nodes in the
mesh. In addition, the incidence i (a, n) of a node on an edge can take only three values:

• 0 if the node does not belong to the edge;

• 1 if the node is the start node of the edge;

• -1 if the node is the end node of the edge.

Table 7.1 shows the incidence matrix for the hexahedron in Figure 7.3.

Gan n1 n2 n3 n4 n5 n6 n7 n8

a1 -1 1
a2 -1 1
a3 -1 1
a4 -1 1
a5 -1 1
a6 -1 1
a7 -1 1
a8 -1 1
a9 -1 1
a10 -1
a11 -1 1
a12 -1 1

Table 7.1: Incidence matrix Gan of the hexahedron in Figure 7.3

7.2.2 The discrete curl Rfa

This is the facet–edge incidence matrix that connects edges to facets of the mesh. As with Gan

the terms of Rfa can be 0, 1 or –1. Each facet is associated with a normal which is either incoming
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or outgoing and a direction of rotation (see Figure 7.3). In addition, the incidence Rfa of a facet
on an edge can take only three values:

• 0 if the edge does not belong to the facet;

• 1 if the edge is orientated in the same direction as the direction of rotation associated with
the facet;

• -1 if the edge is orientated in the opposite direction to the direction of rotation associated
with the facet.

Rfa a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

f1 1 -1 1 -1
f2 1 -1 1 -1
f3 1 -1 1 -1
f4 1 -1 1 -1
f5 1 -1 1 -1
f6 -1 -1 1 -1

Table 7.2: Incidence matrix Rfa pour un hexaèdre

7.2.3 The discrete divergence Dvf

This operator associates all elements with all mesh facets. The divergence is defined by the
volume–facet incidence matrix. Again, its terms are 0, 1 or –1. In addition, the incidence Dvf of
a facet on a volume can take only three values:

• 0 if the facet does not belong to the volume;

• 1 if the normal of the facet is orientated outwards from the volume;

• -1 if the normal of the facet is orientated inwards into the volume.

Dvf f1 f2 f3 f4 f5 f6

V1 -1 1 -1 1 -1 1

Table 7.3: Incidence matrix Dfv pour un hexaèdre

7.2.4 The dual mesh concept
As mentioned in the previous paragraph, it is necessary to discretise the space to solve the problem
numerically. In 3D, a discretised function space Vh (mesh) is made up of (volume) elements, facets,
edges and nodes. The sets of volumes, facets, edges and nodes are respectively called Vv, Vf ,Va,Vn.
The union of all these sets forms the discrete space: Vh = Vv ∪ Vf ∪ Va ∪ Vn. This mesh can be
combined with a dual mesh (grid) Ṽh which is also made up of volumes, facets, edges and nodes,
also referred to as dual. By analogy, it can be established that: Ṽh = Ṽv ∪ Ṽf ∪ Ṽa ∪ Ṽn. The dual
mesh is built from the initial mesh, referred to as the ‘primal’ mesh, by associating:

• each primal node n with a dual volume ṽ

• each primal edge a with a dual facet f̃

• each primal facet f with a dual edge ã

• each primal volume v with a dual node ñ

In Figure 7.4 a 2D primal mesh and its dual are represented.
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Figure 7.4: Discretisation ’of a continuous domain and its dual mesh

7.2.5 Properties of the operators
As seen with the primal mesh, we can similarly define the operators G̃an, R̃fa and D̃vf of the dual
mesh. If the orientation of the edges, facets and elements of the dual mesh is deduced from the
orientation of the edges, facets and elements of the primal mesh, we can demonstrate the following
relationships between the discrete operators [Bossavit 2003]:

Gan = −D̃t
vf

G̃an = −Dt
vf

Rfa = R̃t
fa
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Figure A2 : maillage dual d’un hexaèdre de référence

Figure 7.5: Dual mesh of the hexahedron in Figure 2.3

Using these properties, it can be noted that if the operators on the primal grid are known, it
is easy to deduce the operators on the dual grid and vice versa.

7.3 Properties of interpolation spaces
Let there be a scalar function U belonging to W0 (D), thus giving:
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U =
n=n0∑

1
w0

n un (7.19)

The gradient of function U is written:

gradU =
n=n0∑

1
gradw0

n un (7.20)

however, as was shown in the references [Bossavit 1993] and [Dular 1994], we have:

gradw0
n =

∑
a∈εh

Gan w1
a (7.21)

From the preceding equations, we obtain:

gradU =
∑

n∈Nh

(∑
a∈εh

Gan w1
a

)
un (7.22)

and further:

gradU =
∑
a∈εh

( ∑
n∈Nh

Gan un

)
w1

a (7.23)

Hence, the gradient of a function of W0 is included in W1. Hence:

Im
(
grad W0) ⊂ W1 (7.24)

Thus we have:

Im
(
grad W0) ⊂ Ker

(
rot W1) (7.25)

In the case of a simply connected domain, we find the equation previously defined in the
continuous domain:

Im
(
grad W0) = Ker

(
rot W1) (7.26)

We show [Bossavit 1993][Dular 1994], through the same approach as before, that if U is a
function belonging to W1, then:

U =
∑
a∈εh

w1
a ua (7.27)

Under these conditions, the function rot U is written:

rot U =
∑

f∈Fh

(∑
a∈εh

Rfaua

)
w2

f (7.28)

Thus we have:

rot U ∈ W2 (7.29)
In addition, if domain D is simply connected with a connected surface Γ, the following equation

applies:

Im
(
rot W1) = Ker

(
divW2) (7.30)
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If U is a function of W2 then:

U =
∑

f∈Fh

w2
f uf (7.31)

Under these conditions, calculating divU gives:

divU =
∑

v∈Dh

(Dvf uf ) w3
v (7.32)

we thus have:

divU ∈ W3 (7.33)

and further:

Im
(
divW2) = W3 (7.34)

The properties set out above can be put in the form of a sequence of discrete spaces as shown
in Figure 7.6:

Figure 7.6: Sequence of discrete spaces Wi

7.4 Discretisation of fields and potentials
The physical values are thus linear combinations of space functions. Hence, we can write:

• for the scalar magnetic potential Ω defined in W0
h:

Ω (x, t) =
∑

i

Ωi (t) w0
i (x) (7.35)

• for scalar electric potential φ expressed in W0
b :

φ (x, t) =
∑

i

φi (t) w0
i (x) (7.36)

• for the vector magnetic potential A in W1
b :

A (x, t) =
∑

i

Ai (t) w1
i (x) (7.37)

• for the vector electric potential T in W1
h:

T (x, t) =
∑

i

Ti (t) w1
i (x) (7.38)

• for the time derivative of A which is in W1
b , only for the spectral version:

∂A (x, t)
∂t

=
∑

i

A∂
i (t) w1

i (x) (7.39)
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• for the magnetic field H expressed in W1
h:

H (x, t) =
∑

l

Hl (t) w1
l (x) (7.40)

• for the electric field E defined in W1
b :

E (x, t) =
∑

l

El (t) w1
l (x) (7.41)

• for the magnetic induction B in W2
b :

B (x, t) =
∑

l

Bl (t) w2
l (x) (7.42)

• for the electric current density J in W2
h:

J (x, t) =
∑

l

Jl (t) w2
l (x) (7.43)

• for the magnetic induction Br in W2
b :

Br (x, t) =
∑

l

Br
l (t) w2

l (x) (7.44)

• for the electric current density JΓ in W2
h:

JΓ (x, t) =
∑

l

JΓ
l (t) w2

l (x) (7.45)

• for the magnetic field HΓ expressed in W1
h:

HΓ (x, t) =
∑

l

HΓ
l (t) w1

l (x) (7.46)



Chapter 8

Discretisation of source terms and
global quantities

Summary
The purpose of this chapter is to present the specific features of code_Carmel on tree techniques
and the determination of source values in general. code_Carmel uses an original method to
introduce a gauge. In the potential equations seen above, it uses a tree technique. This approach
is detailed here.

More generally, this chapter explains how overall values are discretised from vectors K and N.

8.1 Introduction of a gauge (edge and facet trees)
8.1.1 Value of trees
As discussed above, to obtain the uniqueness of a vector field, it is necessary to impose a gauge
condition. In the case of curl, as shown in equation 7.26, a gradient must be set. For divergence,
a condition on the curl must be imposed. In what follows, the conditions to be imposed in the
discrete domain will be detailed.

To ensure the uniqueness of a vector U belonging to W1 such that:

rot U = V,

it suffices to fix the circulation of U on the edges of a tree. A tree consists of a set of edges
that connect all the mesh nodes without forming loops (the gauge U .w = f (r) introduced in the
continuous domain is found here at the discrete level).

Let there be two vectors U1 and U2 belonging to W1 such that rot Ui = V and such that
circulation of U1 and U2 on the edges of the tree are fixed. We denote:

∆ U = U1 − U2

.
We thus have:

rot ∆ U = 0 avec ∆ U ∈ W1 (8.1)

The domain being simply connected, there is a scalar λ with:

λ ∈ W0

75
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such that:

∆ U = gradλ (8.2)

In addition, the circulation of ∆ U on the edges of the tree is equal to zero. If n1 and n2 are
two mesh nodes, we have:

λn1 − λn2 =
∫ xn2

xn1

gradλ .dl =
∫ xn2

xn1

∆ U .dl (8.3)

where λn1 and λn2 are the nodal values of λ in n1 and n2, while xn1 and xn2 are the coordinates
of these nodes. To reach n2 from n1, any path can be taken along the edges of the mesh. In this
case, the chosen path can be on an edge tree where the circulation of ∆ U is zero. Under these
conditions:

λn1 − λn2 = 0 (8.4)

which requires:

gradλ = 0

Thus we have:

U1 = U2

Let us now consider U1 and U2 belonging to W2 such that:

div Ui = V

with: V ∈ W3, we then have:

U1 = U2 + rotΛ (8.5)

with: Λ ∈ W1

We take:

U1 − U2 = ∆ U

and:

div (∆ U) = 0

By analogy with the previous case, a facet tree must be constructed on which the flux values
of ∆ U are fixed.

Edge tree construction techniques are widely covered in the literature [Albanese, Rubinacci
2000], [Golias, Tsiboukis 1994], [Gondran, Minoux 1995]. For this reason, in what follows, we only
detail the method we have developed for construction of a facet tree.

However, by way of example, Figure 8.2 shows an edge tree relating to the mesh in Figure 8.1.
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Figure 8.1: Example of a mesh

Figure 8.2: Example of an edge tree

8.1.2 Construction of a facet tree
To develop a facet tree, we will rely on the algorithm for construction of edge trees [Albanese,
Rubinacci 2000]. This algorithm is based on graph properties. In the construction of an edge
tree, because an edge connects two nodes, it is possible to obtain an edge–node graph of a mesh.
However, there is a analogous relationship between facets and elements, as one facet connects two
elements [Le Menach et al 1998].

First, we define a new element EΓ that symbolises the exterior of the domain. It is noted that
all facets belonging to the exterior boundary Γ are part of EΓ. By way of example, Figure 8.3
shows the transposition of two elements and one facet into one edge and two nodes.
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Figure 8.3: Facet–element link

In this figure, two cases are considered: a link between two elements (on the left of Figure 8.3)
and a link between an element and the exterior boundary (on the right of Figure 8.3).

Again taking the mesh in Figure 8.1 and numbering the facets as shown in Figure 8.4:

Figure 8.4: Definition of mesh facets

We can now plot the facet–element graph of this mesh (see Figure 8.5).
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Figure 8.5: Graph of the facet–element link

The boundary element EΓ is placed at the centre of the graph, where all the edges representing
facets belonging to Γ converge. The orientation of the facets corresponds to the direction of the
normals of the facets defined in Figure 8.4.

Consider a vector U belonging to W2 such that:

div U = V avec V ∈ W3.

Vector U and function V can be expressed by the equations:

U =
∑
f∈F

uf wf (8.6)

V =
∑
v∈V

vv wv (8.7)

where vv represents the integral of function V on the element considered. Because of the
relationship between U and V, each element ’e’ has the following property:∑

f∈F

i (v, f) uf = vv (8.8)
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Under these conditions, constructing a facet tree comes down to searching for facets with flux
values that can be set arbitrarily while satisfying equation 8.8 for all the elements. It is thus
demonstrated that the facets, for which flux values are deduced, belong to a ’co-tree’. Taking the
example of a tetrahedron, it is possible to fix the flux on three of its facets. As we have indicated,
the flux is imposed on the fourth facet in order to verify equation 8.8. From the edge–node
representation, a tree A can be constructed connecting all the nodes representing the elements,
without forming a closed loop. It is thus shown that the facets, which correspond to the edges not
belonging to A, form a facet tree.

By way of example, Figure 8.6 shows a facet co-tree corresponding to the mesh in Figure 8.4
and Figure 8.7 shows a facet tree.

Figure 8.6: facet co-tree (solid lines)

8.2 Discretisation of K and N
In Chapter 3, by introducing two vector fields N and K, we developed the coupling of the potential
formulations with the electrical equations of the circuits. We must determine which discrete spaces
these two vectors belong to. To do this, we recall their definitions:

Js = Is N (3.6)

Hs = Is K (3.7)
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Figure 8.7: Representation of a facet tree (facets not greyed out)

In the discrete domain, two vectors are thus introduced Nd and Kd:

Jd
s = Is Nd (8.9)

rot Kd = Nd (8.10)

hence the following set memberships:

Nd ∈ W2

Kd ∈ W1

8.2.1 Discretisation of N
To obtain a divergence of N equal to zero, several methods may be considered. Some express
vector N on the basis of a source vector potential [Ren 1996b], [Golovanov 1997] which naturally
ensures the conservation of vector N. This potential is obtained either analytically for inductors
of simple shape or by minimisation of a functional, which requires finite element calculation. The
curl of the potential is then introduced into the formulations as a source term.

Other methods involve searching for a zero divergence vector N without using the artifice of
a vector potential. Using tensory conductivity and an electrokinetic calculation, it is possible to
obtain a current density, i.e. N at given Is, that is uniform at zero divergence [Dular et al 1996].

Another technique is to introduce two scalar potentials defined on the inductor surfaces. The
vector product of the potential gradients indicates the direction of current density [Kameari,
Koganezawa 1997].

Hence, we suggest an alternative method that does not require finite element calculation and
which applies to wound inductors with a constant cross-section.

To discretise the current density Js, and thus vector N, four conditions must be met:

• the discretised current density must be as close as possible to the actual current density;

• it must be broken down in the space of the facet elements;

• the boundary conditions are: J .n = 0 on the outer envelope of the inductor and J .n = J
on Γb;
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• its divergence must be zero on all mesh elements.

Consider the inductor in Figure 8.8 meshed with tetrahedra.

Figure 8.8: Space discretisation error leading to an outgoing current density.

As shown in Figure 8.8, the mesh does not exactly match the shape of the inductor in the
corners. Hence, if we directly project Js in W2 , the flux jd′

f through a facet ’f’ of the inductor is
written:

jd′

f =
∫

Sf

Js .n dS (8.11)

where Sf is the surface of the facet surface n its normal. The facet fluxes not belonging to the
inductor are zero. The current density Jd′

s thus broken down is expressed as:

Jd′

s =
∑
f∈F

jd′

f wf (8.12)

Under these conditions, let us consider an element ’v’ exterior to the inductor that has one
of its facets in contact with the corner of the coil. Because of the discretisation, the flux jd′

f is
not zero through this facet. However, it is zero on the other facets of element ’v’ because they do
not belong to the inductor. As a result, not only is the divergence of Jd′

s not zero, but a current
density also appears in this element.

To construct a zero divergence field Jd
s in W2 and close to Js, we propose a method based on

the use of a facet tree. We denote Fext the set of facets that belong to the outer surface of the
inductor and Fb the set of facets of the conductor in contact with Γb. The tree is constructed by
including all facets of Fext and Fb except one (otherwise a closed surface is created). On the facets
of Fext, a zero flow (J .n = 0) is imposed. On the facets of Fb and on the other tree facets we
impose:

jd′

f =
∫

Sf

Js .n dS (8.13)

Since the flux jd′

f equal to zero is strongly imposed on the outer facets of the inductor, there
will be no outgoing current through the facets Fext. Inside the inductor, the flow is calculated on
the facets of the co-tree by imposing zero divergence on each element, namely:
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∑
f∈V

jd′

f = 0 (8.14)

The current density vector in W2 thus obtained is close to Js while having zero divergence.
From this vector, we can thus calculate a source field Hs belonging to W1 such that:

rot Hs = Js

8.2.2 Discretisation of K
There are several ways to determine the source field Hs. For inductors of simple shape, it can be
calculated analytically [Kladas, Tegopoulos 1992], [Bouissou 1994], [Nakata et al 1988].

The field Hs can be determined by minimising the difference between rot Hs and the current
density Js flowing in the inductor [Golovanov 1997]. This calculation can be performed on a
sub-domain of D containing the inductor. It is then possible to choose Hs in W1. Finally, if we
have a current density Jd

s belonging to the space of the facet elements, it is possible to determine
the source field by an iterative method [Webb, Forghani 1989] [Biro et al 1993b] [Le Menach et al
1998]. Hs must fulfil two conditions: { rot Hs = Jd

s

Hs ∈ W1

There is an infinite number of fields fulfilling these conditions. To ensure uniqueness, an edge
tree is used (see gauge conditions). On the edges of this tree, we impose circulations of Hs

at arbitrary values (zero, for example). Circulations of Hs on the co-tree edges are calculated
iteratively by checking Ampère’s circuital law for each mesh facet. Figure 8.9 illustrates the
application of this theorem for a triangular facet.

Figure 8.9: Facet crossed by a current jd and definition of the circulations of Hs.

In the magnetostatic or magnetodynamic case, it is useful to impose a field Hs with a zero
tangential component on Γh. To ensure this condition, the construction of the tree begins first on
this surface and then spreads to the whole domain.

8.3 Discretisation of α et β

Function β is discretised on the mesh edges and function α at the nodes. In practise, β is not
determined. Only α and its gradient are evaluated.
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We define a function α such that [Dular, Legos 1998]:

α =
∑

n∈NΓ1
c

wn (8.15)

with NΓ1
c

the set of nodes of Γ1
c and wn the nodal function associated with node n. We note

that function α belongs to W0. This is equal to 1 on Γ1
c and zero outside a domain Dα defined by

the set of elements containing at least one node of Γ1
c . In Dα, function α varies continuously from

1 on the boundary Γ1
c to 0 on the boundary of Dα. From this, we can define αn the vector of the

node values of α of components αn with 1 ≤ n ≤ nn. The components of αn are defined by:

αn = 1 si n ∈ NΓ1
c

(8.16)

αn = 0 ailleurs (8.17)

8.4 Discretisation of the current density of a wound induc-
tor

8.4.1 Introduction
The complexity of the domains and equations in electromagnetic modelling means that discreti-
sation methods must be used to solve them. These methods require discretisation of the domain
as well as various fields, especially the source term, which may be the current density J. In this
specific case, however, the discretised current density must respect a a number of highly restrictive
characteristics: zero divergence to ensure compatibility of the source term [Ren et al 1996], no
current output on the edges of the domain, boundary conditions for the input or output of the
current, etc., while remaining as close as possible to the exact current density.

An effective way to achieve zero divergence is to use graph theory, making use of a facet tree
[Bossavit 1993], [Dlotko et al 2011], [Le Menach et al 1998]. A formulation of the type J = rotT,
[Golovanov et al 1999], can be used to minimise the error between exact and discrete current
densities. There is also the possibility of resolving a matrix system guaranteeing the divergence
and error minimisation conditions [Badics et al 2007].

This idea is taken up here, but still making use of the facet tree technique to solve the matrix
system. We will apply this method to a volume in which the edge mesh introduces a strong
variation in the cross-section and low compliance with the geometric dimensions.

8.4.2 Discretisation using a Whitney complex
We break down a simply connected domain D, of edge ∂D, into E elements and we denote:

F the set of F facets.
E the set of E elements.
Nf the number of facets per element.
∂Des the current input and output edges.

We seek to discretise a uniform current density J . The discretised current density vector
belongs to the space of the facet elements [Bossavit 1993], and is thus written as the following
linear combination:

Jd =
∑
f∈F

Φf Ff (8.18)
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where Ff represents the facet function associated with facet f , and Φf represents the flux of the
current density vector J through facet f , i.e.

∫
f

J .nfds, nf representing the unit normal of facet

f .
To discretise the source term J of the current density, it must be ensured that the following

conditions are met:

• divJd = 0,

• the discretised current density Jd must be as close as possible to the actual current density
J ,

• Jd.n = 0 on ∂D \ ∂Des.

8.4.2.1 Incidence matrix

Let us consider constraint divJd = 0 for all e ∈ E, and integrate to use the Green-Ostrogradski
theorem: ∫

e

divJd dv =
∫

∂e

Jd.n dS =
∑
f∈e

Φf = 0 (8.19)

We translate this equation into a matrix system:

DΦ = 0, (8.20)

where Φi = Φfi
, flux of J through fi, i-th facet of F.

Matrix D is of dimension E × F, with F > E. A row corresponds to an element of the mesh,
a column to a facet. This matrix corresponds to the discrete divergence operator, but also to the
facet–element incidence matrix [Bossavit 1993]. For the reasons developed in [Ren et al 1996], this
condition must be strongly verified.

8.4.2.2 Mass matrix

To ensure a vector Jd that is as close as possible to the exact current density, we will try to
minimise the norm of the difference between Jd and J [Badics et al 2007]:

ε =
∫

D
(Jd − J)2

dv (8.21)

Developing Jd using its equation (8.18) and by differentiating ε with respect to the variable
Φfi , the minimisation problem becomes:∑

f∈F
Φf

∫
D

Ff .Ffi
dv =

∫
D

Ffi
.J dv (8.22)

By considering this equation for all fi ∈ F, we obtain the following matrix system, of size F×F:

MΦ = v (8.23)

where
Mi,j =

∫
D

Ffi
.Ffj

dv, vi =
∫

D

Ffi
.J dv.

Matrix M is conventionally called the mass matrix of the facet functions.
Equations (8.20) and (8.23) thus form an overall system of size (E + F) × F:[

D
M

]
Φ =

[
0
v

]
(8.24)
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8.4.3 Use of the facet tree
The tree used here is an edge and facet tree [Bossavit 1993], [Dlotko et al 2011], [Le Menach et
al 1998]: a vertex of the tree represents a mesh facet, while a link represents an edge. This tree
includes all edge facets, except one, and some of the internal facets. All remaining facets form
what is called the co-tree, which is a facet–element tree.

Use of the facet tree allows the set of facets to be split into two groups: the tree facets, and
those of the co-tree. This means that matrix D is separated into two matrices A and C, the tree
matrix and the co-tree respectively, such that:

DΦ = [C,A]
[
ΦC

ΦA

]
= 0 (8.25)

with

• C,E × E, invertible, where the columns represent the co-tree facets,

• A,E × (F − E), where the columns represent the tree facets.

This leads to the possibility of expressing the fluxes across the co-tree facets as a function of
the fluxes across the tree facets:

ΦC = −C−1AΦA (8.26)

Similarly, we can separate the system (8.23) as a function of ΦC and ΦA:

[MC ,MA]
[
ΦC

ΦA

]
= v ⇐⇒ MCΦC +MAΦA = v (8.27)

However, ΦC = −C−1AΦA, so system (8.27) is finally written:

(−MCC
−1A+MA)ΦA = v (8.28)

This system is of size F × (F − E), and it is overdetermined. By a method of least squares, we
obtain the vector ΦA then deduce ΦC from equation (8.26). Note that the condition divJd = 0 is
fulfilled.

8.4.4 Inversion of the co-tree matrix

Matrix C is made up of 0, 1 and −1, and it has a set of rows with a single non-zero term, another set
with two non-zero terms, ..., and finally a set of rows with Nf non-zero terms. This characteristic
of the matrix allows implementation of an effective algorithm for obtaining C−1.

8.4.5 Application to an elbow of circular cross-section
We discretise the unit current density in an elbow of circular cross-section using code_Carmel
developed by EDF R&D and L2EP. The mesh of the domain is shown in Figure 8.10.
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Figure 8.10: Mesh of an elbow of circular cross-section.

We focus on the bent area to view the field, as the error is located there.

Figure 8.11: (a) Jd before minimisation. (b) Jd after minimisation.

The field in Figure 8.11.(a) represents the current density obtained using only equation (8.26):
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the fluxes are fixed on the tree facets with their exact values, then the fluxes on the co-tree facets
are deduced from equation (8.26). Hence, the divergence is zero.
Figure 8.11.(b) shows the current density obtained by the error minimisation method: zero diver-
gence is ensured, and the error with respect to the exact current density is minimised.

8.4.6 Conclusion
Using the technique presented, we have forced a divergence equal to zero while minimising the
error between the exact and approximate current density fields using the facet tree method.

8.5 Imposing a uniform current per section in any conduc-
tor

This work comes from [Pierquin 2011].
Earlier version of code_Carmel could only deal with inductors made of straight parts or parts

obtained by rotation about an axis. Indeed, the current density is easy to calculate in both these
cases. This fact was highly restrictive, in terms of limitation of the possible geometries, but also
in terms of of use. It was necessary to break down the solid into different parts and find for each
part:

• the current direction in the straight parts;

• a point and a vector forming the rotation axis in the bent parts.

Hence, the Salome platform enables the creation of complex geometries through the use of
numerous tools. A classic example that shows the limitations of earlier version of code_Carmel,
is the ability to place different points and plot the spline curve passing through those points.

Then, to create a solid, it suffices to place a flat face (disk, rectangle, etc.) at one end of this
curve and translate it along the curve. This process is called extrusion along a curve. Such a
construction clearly highlights the impossibility of addressing this problem using only the tools
initially offered in code_Carmel.

It is based on this construction method that this new functionality will be introduced.

8.5.1 Use of a guideline
As it is impossible, or tedious, to search for a function that defines current density Js at any point
in the inductor, or to deal with continuous cases, the idea is to use a discretised guideline of known
density Js, and to deduce from this the current density vector at any point in the domain. In fact,
the only data to be obtained is the direction of vector Js, the norm being constant.

This method is described by distinguishing the case of a constant extrusion cross-section from
the case of a non-constant extrusion cross-section, which is nothing other than a geometric con-
struction.

8.5.2 Case of a constant cross-section
8.5.2.1 Description of the method

The solid is meshed, and the guide curve, denoted C, is then discretised. We denote (Xn)N
n=0 the

set of points of C and D the domain defined by the solid.
The first step is to identify which point of the sequence (Xn)N

n=0 is closest to Y . This point
is denoted Xj . Once Xj is identified, it remains to determine if Y should be associated with the
direction Xj+1 −Xj or Xj −Xj−1.
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To do this, we introduce the plane Pj which is the orthogonal plane to the line δj = (Xj−1, Xj+1)
and passing through Xj , and X

(j)
P,δ their point of intersection. The vector Js is the same at any

point of Pj , namely Js (Xj). By projecting point Y , following Pj , on line δj , we obtain point
X

(j)
Y,δ.

We then perform the scalar product
〈
Xj+1 −Xj−1, X

(j)
Y,δ −X

(j)
P,δ

〉
:

• if
〈
Xj+1 −Xj−1, X

(j)
Y,δ −X

(j)
P,δ

〉
≥ 0 then we associate Y with the direction d = d+ =

Xj+1 −Xj ;

• if
〈
Xj+1 −Xj−1, X

(j)
Y,δ −X

(j)
P,δ

〉
< 0 then we associate Y with the direction d = d− =

Xj −Xj−1.

Once this direction is known, we must find the points of intersection X̃j and X̃j±1 between
line (Y, d±) and the planes Pj and Pj±1.

All that remains is to calculate:

λ = ∥Y − X̃j∥
∥X̃j±1 − X̃j∥

to obtain Js from the equation:

Js (Y ) = λJs (Xj±1) + (1 − λ) Js (Xj)



90 CHAPTER 8. SOURCE TERMS AND GLOBAL QUANTITIES

8.5.2.2 Illustration of the principle

Figure 8.12: Principle of the method

8.5.2.3 Implementation of the academic facet tree

The discretisation of the current density requires the use of a facet tree. A facet tree is a simple
graph, i.e. a set of vertices connected to each other by links, such that:

• two vertices are connected by a single link.

• there is no loop, i.e. there is only one path to connect two vertices.

The tree created here is an edge–facet tree: a vertex of the tree represents a mesh facet, while
a link represents an edge.

This tree includes all edge facets, except one, as well as some of the internal facets All the
remaining facets form what we call the co-tree. This is a facet–element tree.

The technique consists in fixing the flux on the tree facets, and then deducing the flux value
on the co-tree facets to conserve zero divergence:
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∀e ∈ E, div J|e = 0

∫
e

div J dv =
∫

∂e

J .n dS = 0

∑
f∈e

∫
f

J .nf dS = 0

∑
f∈e

Φf = 0

We will focus on describing how to obtain the academic tree, and how it is used to complete
the values on the co-tree facets.

8.5.2.4 Obtaining the academic facet tree

In reality, the tree facets are those that are not in the co-tree, and it is the co-tree that is obtained
first. The co-tree is a facet-element graph. The algorithm is based on the creation of several
numbered co-trees, merged on moving through the elements.

Denoting F the set of facets, the algorithm is:

Algorithm 8.1 Academic facet trees.
1: Entrées: Choose one facet on the edge of the domain: the root facet, corresponding to the

valve. This facet has the number of co-tree 1; the elements separated by the facet are marked
1.

2: for fi ∈ F do
3: if the facet is internal to the domain, i.e. it is not on the boundary then
4: obtain the elements e and ẽ separated by the facet.
5: if neither of the two elements is marked then
6: they form a new co-tree: fi, e and ẽ are marked n, n is

incremented (n = n+ 1).
7: end if
8: if only one of the two elements is marked then
9: the facet is added to the co-tree of the marked element, as

well as the unmarked element: for example, e is marked k,
hence fi and ẽ are marked k.

10: end if
11: if the elements are in different co-trees then
12: the lowest co-tree number is assigned to all elements and all

facets of these co-trees; facet fi will not be in a tree.
13: end if
14: end if
15: end for

At the end of this algorithm, the co-tree facets are marked with a 1, and the tree facets with
a 0.

8.5.2.5 Use of the academic facet tree

Once the facet tree has been obtained, the principle is to calculate the fluxes of the current density
through the facets belonging to the tree, from the analytical vector Js; and from this to deduce
the fluxes on the co-tree facets to maintain zero divergence (see paragraph 8.5.2.3).
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To obtain the fluxes on the co-tree facets, the number of facets to be completed per element is
indicated, then the following algorithm is used:

Algorithm 8.2 Calculation of the fluxes on the co-tree facets.
1: full = FALSE
2: while ( cpt<nbElmts and full=FALSE ) do
3: full = TRUE;
4: for ei ∈ E do
5: if only one facet f is to be completed on element ei then
6: sum the known fluxes as a function of the direction of the

normal of the facet;
7: deduce the fluxes on facet f to be completed;
8: decrease by 1 the number of facets to be completed in ele-

ments e, ẽ separated by f .
9: else

10: full=FALSE
11: end if
12: end for
13: counter increment (cpt=cpt+1)
14: end while

This algorithm has the disadvantage of systematically traversing all mesh elements of the mesh,
which unlike the DFS tree is not optimal. Nevertheless, the calculation time is not noticeably
increased.

8.5.2.6 The minimisation method

We have seen that the discretisation of the current density vector is performed in such a way as
to guarantee zero divergence, and this through the use of a facet tree. But this technique imposes
zero divergence without any control over the Jd

s constructed.

The paper [Badics, Cendes 2007] shows that it is possible to impose zero divergence while
minimising the error between the known current density vector and the discretised vector. We
propose an adaptation of this method, known as the minimisation method, which still uses the
facet tree.

We consider a mesh of domain D with the following notation:

• N the set of nodes;

• A the set of edges;

• F the set of facets;

• E the set of elements.

and their respective cardinals N , A, F and E.

8.5.2.6.1 The divergence matrix
By the Green-Ostrogradski theorem:

∀e ∈ E,
∫

e

div J =
∑

f∈∂e

Φf = 0 (8.29)

with Φf the flux of J through facet f .

By translating this equation on each element, we obtain a matrix system :
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DΦ = 0 (8.30)
Matrix D is of dimension E×F , with F > E, with a row corresponding to a mesh element, and

a column corresponding to a facet. This matrix also corresponds to the facet-element incidence
matrix.

The facet tree can be used to split the set of facets into two groups: tree facets and co-tree
facets. This means that matrix D is separated into two matrices C and A, the the co-tree and
tree matrices respectively, such that:

DΦ = [C,A]
[

ΦC

ΦA

]
= 0 (8.31)

with:
• C, E × E, invertible, where the columns represent the co-tree facets;

• A, E × (F − E) where the columns represent the tree facets.

This makes it possible to express the fluxes on the co-tree facets as a function of the fluxes of
the tree facets:

ΦC = −C−1 AΦA (8.32)
Until now, we have simply calculated the fluxes on the facet tree, i.e. obtained ΦA, and then

deduced from this the fluxes on the co-tree, i.e. obtained ΦC , using formula 8.32. We do not do
that in this case, but we add a minimisation step.

8.5.2.6.2 The minimisation matrix
We saw earlier that the current density vector J belongs to the space of the facet elements,

hence:

J =
∑
f∈F

Φf Ff (8.33)

with:
• Ff the facet functions;

• Φf the fluxes through the facets.

We now want to minimise the error between the analytical current density vector Js and the
discrete current density vector J. This means, considering the norm L2(D), minimising:

ε =
∫

D
(J − Js)2

dv (8.34)

Considering equation 8.34 and developing it:

∫
D

(J − Js)2
dv =

∫
D

∑
f∈F

Φf Ff − Js

2

dv

=
∫

D


∑

f∈F
Φf Ff

2

− 2
∑
f∈F

Φf Ff .Js + J2
s

 dv

=
∫

D

∑
f∈F

Φf Ff

2

dv

︸ ︷︷ ︸
(1)

−2
∑
f∈F

Φf

∫
D

Ff .Js dv +
∫

D
J2

s dv

(8.35)
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Focusing on term (1) of equation 8.35:

∫
D

∑
f∈F

Φf Ff

2

dv =
∫

D

∑
f∈F

Φf Ff

 .

∑
f∈F

Φf Ff

 dv

=
∫

D

∑
f∈F

Φf

∑
g∈F

Φg Ff .Fg

 dv

=
∑
f∈F

∑
g∈F

Φf Φg

∫
D

Ff .Fg dv

(8.36)

Using equations 8.35 and 8.36, we thus seek to minimise:

∫
D

(J − Js)2
dv =

∑
f∈F

∑
g∈F

Φf Φg

∫
D

Ff .Fg dv − 2
∑
f∈F

Φf

∫
D

Ff .Js dv +
∫

D
J2

s dv (8.37)

More precisely, we seek the set of (Φf )f∈F that minimises 8.37. However, seeking the minimum
of a function is equivalent to seeking to cancel out its derivative; we thus differentiate 8.37 with
respect to the variable Φfi:

∂ε

∂Φfi
= 2

∑
f∈F\{fi}

Φf

∫
D

Ff .Ffi dv + 2Φfi

∫
D

Ffi .Ffi dv − 2
∫

D
Ffi

.Js dv (8.38)

Hence, we must solve ∂ε

∂Φfi
= 0, namely:∑

f∈F
Φf

∫
D

Ff .Ffi dv =
∫

D
Ffi .Js dv (8.39)

By considering this equation for all fi ∈ F we obtain the following system matrix:

M Φ = v (8.40)
where:

• Mi,j =
∫

D
Ffi

.Ffj
dv;

• Φi = Φfi
;

• vi =
∫

D
Ffi

.Js dv

The equation can be written in matrix form:

ΦT M Φ − 2 ΦT v +
∫

D
J2

s dv (8.41)

Matrix M is conventionally called the mass matrix of the facet functions (see [Henneron 2004]).
We can separate this system as a function of ΦC and ΦA, as for the divergence matrix:

[MC ,MA]
[

ΦC

ΦA

]
= v ⇐⇒ MCΦC +MAΦA = 0 (8.42)

However, ΦC = −C−1AΦA, so the system 8.40 is finally written:(
−MCC

−1A+MA

)
ΦA = v (8.43)
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This system is of size F × (F − E) and it is overdetermined. This problem must then be solved
by a least squares method, then ΦC deduced from ΦA using equation 8.32.

We have thus forced zero divergence while minimising the error between the exact current
density vector and the approximate current density vector.

8.5.2.6.3 Taking account of boundary conditions
In the previous description of the minimisation method, we did not deal with the domain

boundary conditions to avoid making the explanations too cumbersome. Following on from the
previous results, we now add the information needed to process boundary conditions.

While the minimisation method does not require the fluxes to be fixed on all facets of the
facet tree, it is necessary to fix the fluxes on the facets forming the domain boundary. Hence, for
every facet belonging to the tree and also to the edge of the domain, the flux is fixed. The flux
is calculated from the analytical current density if the facet is on a current input or output edge;
otherwise it is set at 0.

Denoting ΦB the set of fixed fluxes on the boundary and ΦÃ the fluxes of tree facets that
do not belong to the edges, and repeating the previous approach, starting by breaking down the
divergence matrix:

DΦ = 0 ⇐⇒ DΦ =
[
C, Ã,B

]  ΦC

ΦÃ

ΦB

 = 0 (8.44)

from which the expression for ΦC :

ΦC = −C−1 (ÃΦA +BΦB

)
(8.45)

Then the breakdown of the mass matrix:

M Φ = v ⇐⇒ [MC ,MÃ,MB ]

 ΦC

ΦÃ

ΦB

 = v (8.46)

Making the system to be resolved:

(
−MC C

−1 Ã+MÃ

)
ΦA = v +

(
MC C

−1 B −MB

)
ΦB (8.47)

Resolving the system 8.47 by least squares thus reduces the error between the analytical cur-
rent density vector and its discrete value (i.e. with a discrete vector as close as possible to the
analytical), while ensuring zero divergence and exact fluxes at the edges.

Remark 8.5.1 To reduce the size of the matrix and avoid unnecessary calculations, columns
corresponding to zero-flux edges are not taken into account in matrix B (as their contribution is
zero).

Remark 8.5.2 Matrix B represents only the current input/output edges, and hence does not
appear in the case of closed inductors.

Remark 8.5.3 It should be noted that only one edge facet has a flux obtained by minimisation,
as it does not belong to the facet tree; and it is clearly the valve.
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8.5.2.6.4 Inversion of the co-tree matrix
The use of facet trees and co-trees allows the divergence matrix to be broken down into several

matrices, including matrix C, the co-tree matrix. This matrix is square, of size E × E and
invertible. Our method precisely involves obtaining the inverse of this matrix. However, matrix
inversion is usually very costly in computational time and best avoided. Nevertheless, due to the
very particular construction of this matrix, it is possible to set up an efficient algorithm to obtain
C−1, the inverse matrix of C.

By the design of the facet tree and its co-tree, matrix C is made up of 1 and -1, and it has a
set of rows with a single non-zero value, a set of rows with two non-zero terms, and another set
with three non-zero terms, etc. This is represented in two dimensions in the figure below.

Figure 8.13: Facet tree (in red) and co-tree (in black) in two dimensions

It is this characteristic, in the same way that it allowed use of the algorithm in section 8.5.2.5
to deduce the fluxes on the co-tree, that allows inversion of matrix C.

We look for matrix C−1 such that if C x = y then w = C−1 y. We shall see that it is possible
to express a given xj as a linear combination of (yα)α : xj =

∑
α γα yα , with coefficients (γα)α to

be determined.
Consider the rows in matrix C with a single non-zero value. They verify:

Ci,j xj = yi =⇒ xj = yi

Ci,j
=⇒ C−1

j,i = 1
Ci,j

Next, consider the rows in matrix C with two non-zero values. They verify:
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Ci,j xj + Ci,k xk = yi, xk connu =⇒ xj = yi − Ci,k xk

Ci,j

=⇒ C−1
j,i = 1

Ci,j
; C−1

j,α = −Ci,k

Ci,j
γα; ∀α tels que xh =

∑
α

γαyα, γα ̸= 0

Similarly, considering the rows in matrix C with three non-zero values:

Ci,j xj + Ci, k xk + Ci,l xl = yi, xk, xl connus =⇒ xj = yi − Ci,k xk − Ci,l xl

Ci,j

=⇒ C−1
j,i = 1

Ci,j
; C−1

j,α = −Ci,k

Ci,j
γα; ∀α tels que xk =

∑
α

γαyα, γα ̸= 0

C−1
j,β = −Ci,l

Ci,j
γβ ; ∀β tels que xl =

∑
α

γβyβ , γβ ̸= 0

It is possible to continue in this way for rows with four non-zero values, then five, six, etc. At
the end, each xj is written as a linear combination of (yi)i:

xj =
∑

i

γj,i yi

the coefficients γj,i representing the values of matrix C−1
j,i .

The algorithm itself follows the method of algorithm 8.2. For each row in the inverse matrix,
we only record column indices with non-zero values, as well as the associated factors:

Algorithm 8.3 Calculating the inverse of the mass matrix.
1: full = FALSE
2: while ( cpt<nbElmts and full=FALSE ) do
3: full = TRUE;
4: for ei ∈ E do
5: if only one facet f is to be completed on element ei then
6: if only one facet is in the co-tree then
7: index(f) = i;
8: factor(f) = 1 / Ci,f ;
9: else

10: for each facet f̃ of the co-tree in ei, f̃ ̸= f do
11: index(f) = [index(f), index(f̃ ];

12: factor(f) = [factor(f), −
Ci,f̃

Ci,f
factor(f̃)]

13: end for
14: index(f) = i;
15: factor(f) = 1

Ci,f

16: end if
17: decrease by 1 the number of facets to be completed in elements e, ẽ

separated by f
18: else
19: full = FALSE
20: end if
21: end for
22: counter increment (cpt=cpt+1)
23: end while
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8.5.2.7 Calculation of the mass matrix and of right member

The mass matrix and the second member involve integrals, which cannot be calculated analytically.
We begin by breaking down the integral on the domain into a sum of integrals on the elements:∫

D
... =

∑
e∈E

∫
e

...

we then calculate the numerical integral on the elements using quadrature formulas, as pre-
sented in the book [Dhatt, Thouzot 1984]. In the case of a tetrahedron e, we choose a formula
with an order of 3 to 5 quadrature points:

y

D

f (x, y, z) dv =
5∑

i=0
wi f (xi, yi, zi)

with (wi)i the weights associated with the values f at quadrature points (xi, yi, zi)i.

Consider the integral
∫

D Ffi
.Ffj

dv and focus on the facet function supports.

Facet function Ffi is defined on elements ei, ẽi, and function Ffj on elements ej , ẽj . Consider
the various possible cases to calculate this integral:

fi = fj ,

∫
D

Ffi
.Ffj

dv =
∫

ei

F2
fi
dv +

∫
ej

F2
fi
dv

ej ∈ {ei, ẽi}
∫

D
Ffi

.Ffj
dv =

∫
ej

Ffi
.Ffj

dv

ẽj ∈ {ei, ẽi}
∫

D
Ffi

.Ffj
dv =

∫
ẽj

Ffi
.Ffj

dv

ej /∈ {ei, ẽi} et ẽj /∈ {ei, ẽi}
∫

D
Ffi

.Ffj
dv = 0

Thus, the integral
∫

D
Ffi

.Ffj
dv will be non-zero if fj ∈ ei ∪ ẽi, i.e. if the intersection of the

facet function supports is other than the empty set: {ei, ẽi} ∩ {ej , ẽj} ≠ ∅.

8.6 Case of non-constant cross-section
Coils are wound inductors, usually consisting of a winding of copper wires. These wires are usually
considered as one and the same entity, especially when it comes to modelling the current flowing
through them.

In particular, some coils have wedges between the wire bundles. It is far too costly to model
each bundle of wires independently, so it would be useful to model this system in one piece.
Thus, although there is no such thing as a variable cross-section inductor, the wish to ignore the
heterogeneity of the system (air, wedge, copper), and treat it as a single block, leads to the concept
of an inductor of non-constant cross-section.

To illustrate the approach, we will construct the current density vector in a very specific 2D
geometry, before correcting it using the facet tree technique. This test will very quickly prove the
limitations of the facet tree for this type of problem.
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Figure 8.14: Semi-circles for a non-constant cross-section

8.6.1 Geometry
To build coils of non-constant cross-section using SALOME software, a very simple method is
to create two half-cylinders with different axes, but in the same plane. For our two-dimensional
tests, we consider two semi-circles whose centres are on the line formed by the ends of the arcs,
illustrated below:

We introduce the following notation:

• Cint is the smaller semi-circle, the inner semi-circle;

• Cext is the larger semi-circle, the outer semi-circle;

• cint = (0, 0) is the centre of Cint;

• cext = (xext, 0) is the centre of Cext;

• rint is the radius of Cint;

• rext is the radius of Cext;

• D is the domain formed by the semi-circles and the line y = 0;

• s = xext + rext − rint is the size of the final cross-section.

8.6.2 Calculation of the current density
The input current density vector is a unit vector. We construct J such that its value decreases
as the cross-section increases (to maintain zero divergence), such that it is tangential to the edges
and its divergence is small.

Let there be a point P = (x, y) in the domain. We know that if P ∈ Cint, P verifies:

x2 + y2 = r2
int (8.48)

Similarly, if P ∈ Cext:

(x− xext)2 + y2 = r2
ext (8.49)

For the other points of the domain, we will look for the centre cvar = (xvar, 0) ∈ [cint; cext] of
a semi-circle Cvar such that P verifies:

(x− xvar)2 + y2 = |P − cvar|2 (8.50)
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We know that if P is on a circle of centre c, then the expression for the unit current density
vector at this point is:

JP = ∥JP ∥ (sin (θc) ,− cos (θc)) (8.51)

where θc is the angle between lines Ox and (c, P ).
Consider the point P in the polar coordinate system, for which cint is the centre:

P = (ρ, θ)

We know that if:

ρ = rint alors P ∈ Cint

We look for a value of ρ such that point P belongs to circle Cext; in other words, we look for
which pair of values of ρ, θ being fixed, satisfies equation 8.49:

(ρ cos θ − xext)2 + (ρ sin θ)2 = r2
ext

This amounts to solving the quadratic equation:

ρ2 − ρ (2xext cos θ) + x2
ext − r2

ext = 0 (8.52)

Denoting ρmax the solution of this equation. We can then obtain cvar as a function of ρ using
the formula:

cvar = ρ− rint

ρmax − rint
cext (8.53)

Denoting θvar the value of the angle between the abscissa line and line (cvar, P ), this gives:

JP = ∥JP ∥ (sin θvar,− cos θvar) (8.54)

with:

∥JP ∥ = π − θ

s π
+ θ

π
(8.55)

8.6.3 Use of the facet tree
Once our current density vector has been calculated (see figure below), we perform a correction
of J to obtain zero flux on the edges, as well as a zero divergence.
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Figure 8.15: Exact J in a non-constant cross-section and its divergence on the elements

The use of the facet tree proves to be a disaster. For a small variation in cross-section variation,
disturbance of the direction disturbance is acceptable, but the norm is already too heavily skewed.
When the ratio between the input and output cross-sections is greater than 2, the current density
vector is completely false. The facet tree is thus completely unusable in the case of a non-constant
cross-section.

8.6.4 Minimisation method
While the facet tree does not work well, the minimisation method allows for cases of inductors with
a limited variation in cross-section. While the previous phenomena do appear, they are mitigated.
If the difference in cross-section is not too great, the current density vector is acceptable in terms
of direction, but its norm already shows a wide variation (see figure below).
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Figure 8.16: J obtained by minimisation for a non-constant cross-section

However, as with the facet tree alone, if the variation in cross-section is too great, the current
density is totally wrong (see figure below).

Figure 8.17: J obtained by minimisation for a non-constant cross-section



Chapter 9

Discretisation of weak forms in
code_Carmel

Abstract
We will project the different values into the discrete function spaces using simple interpolation
functions. For the time-based version of code_Carmel, the time differentiation in the magneto-
dynamic and circuit coupling equations will be discretised using the backward Euler method. For
the spectral version of code_Carmel, a specific approach is used.

9.1 Discrete function spaces
In practice, the discretisation of continuous Hilbert spaces by the finite element method is based
on a mesh of domain Dh. Here, this means cutting up the domain under study into simple
polyhedra respecting the different boundaries between the media. A mush thus designates the
set of volumes, faces, edges and nodes. On a given mesh, there is an infinite number of discrete
sub-spaces available to approach the continuous Hilbert spaces defined earlier.

Here, it has been chosen to represent the discretised spaces using lowest-order Whitney el-
ements. In addition to being simple, they have the advantage of associating each space class
(H 1 (D), H (rot,D), H (div,D) and L2 (D)) with a type of element (node, edge, facet and vol-
ume).

Although only the approximation of H (rot,D) and H 1 (D) is necessary for the discretisa-
tion of the weak formulations, for the sake of completeness we present the approximation of the
four Hilbert spaces H 1 (D), H (rot,D), H (div,D) and L2 (D) by the respective Whitney spaces
W 0 (Dh), W 1 (Dh), W 2 (Dh) and W 3 (Dh), where D is a topologically trivial domain, simply
connected and without cavity, and Dh is a mesh based on this domain.

9.1.1 Approximation of H 1 (D)
Let n0 be the number of nodes in mesh Dh. The lowest-order Whitney space to approach H 1 (D)
on Dh is:

W 0 (Dh) = V ect
(
w0

1 (x) , w0
2 (x) , ..., w0

n0
(x)
)

⊂ H 1 (D) (9.1)

where the basic functions
(
w0

i (x)
)

i=1,...,n0
at values in R verify the following four properties:

1. denoting xj the coordinates of the j-th node, we have:

103
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w0
i (xj) = δj

i , ∀ (i, j) ∈ {1, ..., n0}2 (9.2)

with δj
i the Kronecker symbol set to 1 if i = j and 0 otherwise. Thus, w0

i (x) is associated
with node i which is why we talk about nodal functions.

2. w0
i (x), i = (1, ..., n0) is continue on D, and also belongs to H 1 (D).

3. the set of functions
(
w0

i (x)
)

i=1,...,n0
is a partition of unity on D:

n0∑
i=1

w0
i (x) = 1 (9.3)

4. the i-th nodal function w0
i is identically zero on element Kj if this does not contain node i.

Thus, any scalar field s (x) belonging to H 1 (D) will be approximated in W0 (Dh) by:

sh (x) =
n0∑

i=1
si w

0
i (x) (9.4)

By evaluating this expression at the mesh nodes xj and using the first property, we find that
si corresponds to the point value at node i. Finally, it should be noted that the quantity sh (x) is
preserved when passing from one element to another.

Remark 9.1.1 On a triangular mesh in 2D or tetrahedral in 3D, functions w0
i (x, y, z) are La-

grange polynomials of not more than 1st order on each element. On more complex elements, there
is a generalisation of this type of polynomial.

9.1.2 Discrete approximation of H (rot, D)
Let n1 be the number of edges in mesh Dh. We define the Whitney space to approach H (rot,D)
on Dh by:

W1 (Dh) = V ec
(
w1

1 (x) ,w1
2 (x) , ...,w1

n1
(x)
)

⊂ H (rot,D) (9.5)

where w1
i (x) is a vector function with values in R3, associated with the edge of index i. By

analogy with property 1 for the nodal functions, they verify:∫
aj

w1
i (x) .dl = δj

i , ∀ (i, j) ∈ {1, ..., n1}2 (9.6)

where the preceding integral designates the circulation of w1
i (x) associated with edge aj .

Due to the properties of Whitney spaces, their expression is defined directly from that of the
nodal functions. Hence, the function associated with edge i, orientated from node u to node v is:

w1
i = w0

v grad

 ∑
t∈N (v,u)

wt

− w0
u

 ∑
t∈N (u,v)

wt

 (9.7)

where N (u, v) designates the nodes on facets containing node u but not node v.

Remark 9.1.2 For example, for the cubic element represented in Figure 9.1, N
(
1, 2
)

contains
nodes ({1, 4, 5, 8}. Only facet ’1485’ contains node 1 and does not contain node 2.
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Figure 9.1: Cubic element

Thus, any vector field V (x) belonging to H (rot,D) will be approximated in W1 (Dh) by:

Vh (x) =
n1∑

i=1
Vi w1

i (x) (9.8)

where, as with the nodal functions, Vi corresponds to the circulation of V on edge i.

Finally, an interesting property of this approximation is that it preserves the continuity of
the tangential trace when passing from one element to another.

9.1.3 Discrete approximation of H (div, D)
Let n2 be the number of facets in mesh Dh. We define the Whitney space to approach H (div,D)
on Dh by:

W2 (Dh) = V ec
(
w2

1 (x) ,w2
2 (x) , ...,w2

n2
(x)
)

⊂ H (div,D) (9.9)

where w2
i (x) is a vector function with values in R3, associated with the i-th facet. As before,

we have: ∫
fj

w2
i (x) .ds = δj

i , ∀ (i, j) ∈ {1, ..., n2}2 (9.10)

where the previous integral designates the flux of w2
i (x) through facet fj .

As with the edges, the facet functions are defined from the nodal functions. For conventional
elements with three or four nodes per face, they are written:

w2
i = a

∑
r∈N (i)

w0
r

grad
∑

t∈N(r,r+1)
w0

t

 ×

grad
∑

t∈N(r,r−1)
w0

t

 (9.11)

Here, N (i) designates the ordered list of nodes on facet i, and a is a constant which is 2 on
facets with three nodes and 1 on facets with four. Finally, the cyclic index r + 1 in N

(
r, r + 1

)
actually corresponds to the node at the node following r in the list N (i).

Remark 9.1.3 Using the example of the cubic element (see Figure 9.1), and if we wish to calculate
the function associated with facet ’i’ made up of nodes ’1458’, N (i) is the ordered list {1, 4, 5, 8}
in the previous expression, it is thus a question of summing the belonging to ’N

(
r, r + 1

)
’ and

’N
(
r, r − 1

)
’. In practice, this means calculating N

(
1, 4
)
, N

(
4, 5
)
, N

(
5, 8
)

and N
(
8, 1
)

for the
term ’N

(
r, r + 1

)
’, and N

(
1, 8
)
, N

(
8, 5
)
, N

(
5, 4
)

and N
(
4, 1
)

for ’N
(
r, r − 1

)
’.

Thus, any vector field V (x) belonging to H (div,D) will be approximated in W2 (Dh) by:
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Vh (x) =
n2∑

i=1
Vi w2

i (x) (9.12)

Vi corresponds to the flux of V on facet i. Here it is the normal trace of Vh that is preserved
through the interfaces.

9.1.4 Discrete approximation of L2 (D)
Let n3 be the number of volume elements in mesh Dh. We define the Whitney space to approach
L2 (D) on Dh by:

W3 (Dh) = V ec
(
w3

1 (x) , w3
2 (x) , ..., w3

n3
(x)
)

⊂ L2 (D) (9.13)

where w3
i (x) is a scalar function with values in R+ associated with element i.

By analogy with the previous calculations, they verify:∫
ej

w3
i (x) .dv = δj

i , ∀ (i, j) ∈ {1, ..., n3}2 (9.14)

Here, the scalar function is integrated on element ej .

In reality, the volume functions are constant on the element with which they are associated,
and zero otherwise. For element ei we thus have:

w3
i (x) = 1

vol (ei)
(9.15)

where vol (ei) designates the volume of element ei.

Finally, any scalar field s (x) in L2 (D) will be approximated in W3 (Dh) by a constant scalar
function by parts:

sh (x) =
n3∑

i=1
si w

3
i (x) (9.16)

where si corresponds, according to the previous property, to the volume of element ei.

9.1.5 Taking account of ad hoc boundary conditions
The lowest-order Whitney spaces thus provide a geometric definition of the approximating spaces
of: H 1 (D), H (rot,D), H (div,D) and L2 (D). Similarly, their sub-spaces with ad hoc boundary
conditions on a boundary Σ are also geometrically and simply defined.

For example, H 1
0,Σ (D) contains the functions of H 1 (D) for which the trace cancels out on Σ.

The discrete space to approach it, W0
0,Σ (Dh), is obtained directly from W0 (Dh) by removing

the functions associated with the nodes included in Σ. Thus, by denoting DΣ the restriction of
Dh on the edge of Σ, we have:

W0
0,Σ (Dh) = W0 (Dh) \ W0 (DΣ) (9.17)

with the conformity property conserved:

W0
0,Σ (Dh) ⊂ H 1

0,Σ (D) (9.18)

Similarly, we can define W1
1,Σ (Dh), the space discretising H0,Σ (rot,D), by removing from

W1 (Dh) the functions related to the edges on Σ. Hence, the sub-space of W1 (Dh) with ad hoc
boundary conditions on Σ is written:
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W1
0,Σ (Dh) = W1 (Dh) \ W1 (DΣ) (9.19)

with:

W1
0,Σ (Dh) ⊂ H0,Σ (rot,D) (9.20)

In general, we can define the Whitney space with ad hoc boundary conditions on a boundary
Σ by removing functions related to elements (nodes, edges and facets) belonging to Σ:

Wk
0,Σ (Dh) = Wk (Dh) \ Wk (DΣ) , k ∈ {0, 1, 2} (9.21)

9.2 Electrokinetic problem
9.2.1 Formulation φ with imposed voltage
The weak form of the equation is:

∫
Dc

σ gradφ′ .gradφdDc +
∫

Γ
φ′ (σ grad φ) .n dΓ = −

∫
Dc

σ gradφ′ .gradαV dDc (5.77)

Potential φ belongs to the nodal element space W0
Γb

:

φ =
∑

n∈Nh

φn w
0
n (9.22)

As a result, the starting equation becomes:

∑
n∈Nh

φn

∫
Dc

σ gradφ′ .gradw0
n dDc

+
∑

n∈Nh

φn

∫
Γ
φ′ (σ grad w0

n

)
.n dΓ

= −
∫

Dc

σ gradφ′ .gradαV dDc (9.23)

It is recalled that Γ = Γh ∪ Γb. By its definition in W0
Γb

, potential φ is zero on Γb. We thus
naturally impose E × n = 0 on Γb in the strong sense.

In addition, by eliminating the calculation of the surface integral on Γh, we impose J .n = 0
in the weak sense. The integral form is thus written:∑

n∈Nh

φn

∫
Dc

σ gradφ′ .gradw0
n dDc = −

∫
Dc

σ gradφ′ .gradαV dDc (9.24)

For the test function, we thus take:

φ′ = w0
i

Thus equation 5.77 in its integral form becomes:

∀w0
i ∈ W0

Γb

∑
n∈Nh

φn

∫
Dc

σ gradw0
i .gradw0

n dDc = −
∫

Dc

σ gradw0
i .gradαV dDc (9.25)
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9.2.2 Formulation φ with imposed current

To impose the current with the scalar potential formulation, we saw that it was necessary to
express β and J as a function of α and the scalar electric potential ϕI . The scalar electric
potential formulation with an imposed current is written:

divσgradφ+ divσgradα V = 0∫
Dc

gradα . σgrad (φ+ αV ) dDc = I
(3.28)

The voltage thus becomes an unknown when the current is imposed. Thus equation 3.28 in its
integral form becomes:

∀w0
i ∈ W0

Γb

∑
n∈Nh

φn

∫
Dc

σ gradw0
i .gradw0

n dDc +
∫

Dc

σ gradw0
i .gradαV dDc = 0∑

n∈Nh

φn

∫
Dc

gradα . σgrad
(
w0

n + αV
)
dDc = I

(9.26)

9.2.3 Formulation T

The weak form obtained is:

∫
D

1
σ

rotU . rotT dD = −
∫

D

1
σ

rotU . rotHs dD (5.81)

with Hs =
∑
a∈A

wa ha,s where ha,s is the circulation of Hs calculated on the edges of the mesh

using the tree technique.

Potential T is sought in W1
Γh

:

T =
∑

a∈Ah

Ta w1
a (9.27)

For the test function, we take:

U = w1
i

Equation 5.81 in its integral form becomes:

∀w1
i ∈ W1

Γh

∑
a∈Ah

Ta

∫
D

1
σ

rotw1
i . rotw1

a dD = −
∑
a∈A

ha,s

∫
D

1
σ

rotw1
i . rotw1

a dD (9.28)

To ensure a unique solution, it is necessary to impose a gauge condition. However, if the
conjugated gradient method is used to resolve the system of equations, the problem is automatically
“gauged”, as in the case of the vector magnetic potential formulation [Ren 1996][Ren 1996b].
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9.3 Magnetostatic problem
9.3.1 Projection in space only
9.3.1.1 Formulation A

The weak form of the equation is:

∫
D

1
µ

rotA′ . rotA dD −
∫

Γ
A′ .

(
n × 1

µ
rot A

)
dΓ =

∫
D

A′ .Js dD +
∫

D

1
µ

Br . rot A′ dD (5.61)

The vector magnetic potential A belongs to the edge element space. Its discrete form is thus
written:

A =
∑
a∈A

w1
aaa A ∈ W1

Γb
(9.29)

where aa is the circulation of the vector potential A on edge ’a’.

The integral form of the formulation to be solved is therefore (see equation 5.61) taking as its
test function w1

i ∈ W1
Γb

:

∫
D

rotw1
i rotA dD −

∫
Γ

w1
i .

(
n × 1

µ
rot A

)
dΓ =

∫
D

w1
i .Js dD +

∫
D

1
µ

rot w1
i .Br dD (9.30)

with:

Jd
s =

∑
f∈F

w2
f j

d
s

The current density is discretised in the facet element space.

The integral on Γ breaks down as before into two terms. The first on Γb is eliminated naturally,
which leads to B .n = 0 imposed in the strong sense. By eliminating the second (on Γh) we impose
H × n = 0 in the weak sense. Equation 9.30 thus becomes:∫

D
rotw1

i rotA dD =
∫

D
w1

i .J
d
s dD +

∫
D

1
µ

rot w1
i .Br dD (9.31)

This leads to the final integral formulation:

∀w1
i ∈ W1

Γb

∑
a∈A

aa

∫
D

rotw1
i rotw1

a dD =
∫

D
Js .w1

i dD +
∫

D

1
µ

rot w1
i .Br dD (9.32)

In this case, resolution by the conjugated gradient method leads to an automatically gauged
system [Ren 1996b]. Under these conditions, the use of a gauge of type A .w is no longer necessary.

9.3.1.2 Formulation Ω

The weak form of the formulation is:

∫
D
µ (grad Ω′ .grad Ω − grad Ω′ .Hs) dD +

∫
Γ

Ω′ (µgrad Ω) dγ = −
∫

D
Ω′ div BrdD (5.67)
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The scalar potential Ω belongs to the nodal element space W0
h, hence it can be written as

follows:

Ω =
∑

n∈Nh

w0
n Ωn (9.33)

Hence we take the test function w0
i ∈ W0

h, so:

∫
D
µ
(
gradwi

0 .grad Ω − gradwi
0 .Hs

)
dD +

∫
Γ
w0

i (µgrad Ω) dγ = −
∫

D
w0

i div BrdD (9.34)

where, Hs which represents the source field, is calculated from Jd
0 and broken down in space

W1
h.

For the surface integral Γ, on Γh we have w0
i = 0, which imposes H × n = 0 in the strong

sense. However, by eliminating the integral on Γb, the condition B .n = 0 is imposed in the weak
sense. Under these conditions, the preceding equation is written:

∀w0
i ∈ W0

Γh

∑
n∈Nh

Ωn

∫
D
µgradwi

0 .gradwn
0 dD =∫

D
µgradwi

0 .Hs dD −
∫

D
w0

i div BrdD (9.35)

9.3.2 Projection in space and time
This case is not detailed here as it is dealt with as a special case for magnetodynamic problems
in paragraph 9.4.2.

9.4 Magnetodynamic problem
9.4.1 Projection in space only
9.4.1.1 Formulation A - φ

The weak form of this formulation is given by the following expressions:

∫
D

[
1
µ

rotA′ . rotA + σA′ .

(
∂A
∂t

+ gradφ
)]

dD =
∫

D
Js .A′ dD +

∫
D

1
µ

Br . rot A′ dD (5.29)

∫
D
σ gradφ′

(
∂A
∂t

+ gradφ
)
dD = 0 (9.36)

This formulation has two unknowns: the vector magnetic potential A and scalar electric po-
tential φ defined in the Whitney element space as follows:

φ =
∑

n∈Nh

w0
nφn φ ∈ W0

Γb
(9.37)

A =
∑

a∈Ah

w1
aaa A ∈ W1

Γb
(9.38)

We thus take:
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A′ = w1
i

and

φ′ = w0
i

The system of equations 5.29 is thus written:

∫
D

[
1
µ

rotw1
i . rotA + σw1

i .

(
∂A
∂t

+ gradφ
)]

dD =∫
D

Js .w1
i dD +

∫
D

1
µ

Br . rot w1
i dD (9.39)

∫
D
σ gradw0

i

(
∂A
∂t

+ gradφ
)
dD = 0 (9.40)

The first equation corresponds to Ampère’s circuital law and the second to the conservation
of the current density flux.

As already noted above, the surface integrals disappear. This amounts to strongly imposing
boundary conditions on Γb (E × n = 0 and B .n = 0) and weakly on Γh (H × n = 0 and
J .n = 0).

Unlike the expressions in the preceding paragraphs, the weak formulation here shows time
differentiations. They are dealt with in paragraph 9.5.

9.4.1.2 Formulation T-Ω

The weak formulation is written:

∫
D

[
1
σ

rotT . rotT′ + T′ .
∂

∂t
µ (T − grad Ω)

]
dD −

∫
∂D

(E × n) .T′ dγ =∫
D

[
1
σ

rotHs . rotT′ + T′ .
∂

∂t
(µHs + Br)

]
dD (5.49)

∫
D

[
grad Ω′ .

∂

∂t
µ (T − grad Ω)

]
dD −

∫
∂D

(E × n) .grad Ω′ dγ =∫
D

[
grad Ω′ .

∂

∂t
(µHs + Br)

]
dD (5.50)

For this formulation, based on the reasoning above, the surface integrals on Γ disappear. The
boundary conditions are then imposed in the weak sense on Γb (E × n = 0 and B .n = 0) and in
the strong sense on Γh (H × n = 0 and J .n = 0).

This formulation also has two unknowns: the vector electric potential T and scalar magnetic
potential Ω defined in the Whitney element space as follows:

Ω =
∑

n∈Nh

w0
n Ωn Ω ∈ W0

h (9.41)

T =
∑

a∈Ah

w1
a ta T ∈ W1

h (9.42)
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For the test function, we take:

T′ = w1
i

and:

Ω′ = w0
i

Equations 5.49 and 5.50 thus become:

∑
a∈Ah

ta

∫
D

1
σ

rotw1
a . rotw1

i dD

+
∑

a∈Ah

ta

∫
D

w1
i .

∂

∂t
µw1

a dD −
∑

n∈Nh

Ωn

∫
D

w1
i .

∂

∂t
µgradw0

n dD =

∫
D

[
1
σ

rotHs . rotw1
i + w1

i .
∂

∂t
(µHs + Br)

]
dD (9.43)

∑
a∈Ah

ta

∫
D

gradw0
i .

∂

∂t
µw1

a dD −
∑

n∈Nh

Ωn

∫
D

gradw0
i .

∂

∂t
µgradw0

n dD =

∫
D

[
gradw0

i .
∂

∂t
(µHs + Br)

]
dD (9.44)

By integrating this last equation in time, we obtain:

∑
a∈Ah

ta

∫
D

gradw0
i . µw1

a dD −
∑

n∈Nh

Ωn

∫
D

gradw0
i . µgradw0

n dD =∫
D

[
gradw0

i . (µHs + Br)
]
dD (9.45)

We can discretise fields Hs and Br:

Hs (x, t) =
∑

l

Hsl w1
l (x) (9.46)

Br (x, t) =
∑

l

Brl

(
w2

l (x) × n
)

(9.47)

The weak form integral is written with these considerations:
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∑
a∈Ah

ta

∫
D

1
σ

rotw1
a . rotw1

i dD

+
∑

a∈Ah

ta

∫
D

w1
i .

∂

∂t
µw1

a dD −
∑

n∈Nh

Ωn

∫
D

w1
i .

∂

∂t
µgradw0

n dD =

∑
l

Hsl

∫
D

1
σ

rot w1
l . rotw1

i dD +
∑

l

Hsl

∫
D

w1
i .

∂

∂t
µw1

l dD

+
∑

l

Brl

∫
D

w1
i .
(
w2

l × n
)
dD (9.48)

∑
a∈Ah

ta

∫
D

gradw0
i . µw1

a dD −
∑

n∈Nh

Ωn

∫
D

gradw0
i . µgradw0

n dD =

∑
l

Hsl

∫
D

gradw0
i . µw1

l dD +
∑

l

Brl

∫
D

gradw0
i .
(
w2

l × n
)
dD (9.49)

Unlike the expressions in the preceding paragraphs, the weak formulation here shows time
differentiations. They are dealt with in paragraph 9.5.

9.4.2 Projection in space and time
One way to obtain steady state without calculating the transient state, when the power source is
multi-harmonic and sinusoidal, is to use the Harmonic Balance Method. This is a Fourier-type
spectral approach that provides a spectral representation (Fourier series) of the solution sought
when the values of the system under study are periodic. When the values are not periodic, the
Fourier basis is no longer suitable.

We therefore propose to develop spectral approaches in which the discretisation bases of the
time dimension are suited to the properties (periodicity, regularity and continuity) of the electro-
magnetic values. We introduce the finite dimension space C = (ψi)nt

i=1 containing the continuous
scalar functions defined in the interval T . The N t elements of C form a basis relative to the scalar
product of L2

w (T ), where w is a positive function on T , i.e.:∫
T
ψi (t) ψj (t) w (t) dt = δij ; 1 ≤ i, j ≤ nt (9.50)

with δij the Kronecker product.

To simplify the notation, the weighted integral 9.50 is written:∫
Tw

ψi ψj

We will now describe two variants of the spectral approach for the calculation of the solution
sought X (t) in the form:

X (t) =
Nt∑
i=1

Yi ψi (t) (9.51)

where the spectral coefficients Yi are vectors containing all the spatial degrees of freedom to
be determined.

For example, the vector of the unknowns of the vector potential is written:
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A (t) =
Nt∑
i=1

Ai ψi (t) (9.52)

where Ai is the i-th spectral vector of size n1 (total of the spatial unknowns of the vector
magnetic potential).

9.4.2.1 Differentiation in the spectral domain

The interest of spectral methods in relation to transient techniques (time methods) lies in the fact
that, for any order, derivatives can be easily linked to their primitives.

As a result, unknowns A∂
ij , for i = 1 to i = N t, are linked to unknowns Aij by the differentiation

matrix D as follows:  A∂
1j
...

A∂
Ntj

 = D

 A1j

...
ANtj

 (9.53)

Matrix D is a square matrix of size N t × N t that depends on the adopted discretisation basis
C. It is explained in annex N for the Fourier basis and the Legendre and Chebyshev polynomial
bases.

Hence, we link vector XA∂ and XA by:



 A∂
11
...

A∂
1n1


... A∂

Nt1
...

A∂
Ntn1




=



 D11 0
. . .

0 D11

 . . .

 D1Nt 0
. . .

0 D1Nt


... . . . ... DNt1 0

. . .
0 DNt1

 . . .

 DNtNt 0
. . .

0 DNtNt







 A11
...

A1n1


... ANt1
...

ANtn1




(9.54)

In other words, by denoting In1 the identity matrix of size n1 × n1, we write:

XA∂

= (D ⊗ In1) XA (9.55)

where ⊗ is the Kronecker product described in annex O.

9.4.2.2 Formulation A - φ

The weak form of the equation obtained above is:∫
T

∫
D

[
µ−1 rotA . rotA′ + σ

(
∂A
∂t

+ gradφ
)
.A′
]
dD =

∫
T

∫
D

Js .A′ dD +
∫

T

∫
D

1
µ

Br . rotA′ dD +
∫

T

∫
Γ

(
HΓ × n

)
.A′ dγ∫

T

∫
D
σ

(
A
∂t

+ gradφ
)
.gradφ′ dD = 0

(5.40)
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Remark 9.4.1 In multi-harmonic code_Carmel, before applying the Galerkin method, we assume
that the non-linear constitutive relation can be written in the general form:

H = K (B) = K (rot A) (9.56)

The non-linear relation is then written:

H (x, t) = ν (x) B (x, t) + K (x, t) (9.57)

Given the previous remark expressing the relation between H and B, the weak form of equation
5.40 becomes:

∫
T

∫
D

[
K (rotA) . rotA′ + σ

(
∂A
∂t

+ gradφ
)
.A′
]
dD =

∫
T

∫
D

Js .A′ dD +
∫

T

∫
D

1
µ

Br . rotA′ dD +
∫

T

∫
Γ

(
HΓ × n

)
.A′ dγ∫

T

∫
D
σ

(
A
∂t

+ gradφ
)
.gradφ′ dD = 0

(9.58)

One way to solve system 9.58 is to apply the Galerkin method. The discrete weak form of the
magnetodynamic problem can be obtained by applying the weighted residuals and the Galerkin
method to system of equations 9.58 or by discretising the dependent degrees of freedom of time
on C, i.e. by writing the values A, φ and J0 as linear combinations of space functions (belonging
to W1, W1 or W2) and time functions (the indices of A (x, t) and φ (x, t) such that we find the
notation chosen previously for XA and Xφ):

A (x, t) =
∑
s,i

As,i w1
i (x) ψs (t) (9.59)

∂tA (x, t) =
∑
s,i

A∂
s,i w1

i (x) ψs (t) (9.60)

φ (x, t) =
∑
s,j

φs,j w
0
j (x) ψs (t) (9.61)

J0 (x, t) =
∑
s,l

Js,l w2
l (x) ψs (t) (9.62)

Br (x, t) =
∑
s,l

Bs,l w2
l (x) ψs (t) (9.63)

HΓ (x, t) =
∑
s,l

HΓ
s,l

(
w1

l (x) × n
)
ψs (t) (9.64)

By introducing the preceding equations into 9.58 the discrete weak form of the problem is
written:
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∫
T

∫
D

K (rotA) . rotu +
∑

s

∫
T
ψs (t)

∑
i

A∂
si

∫
Dc

σw1
i .u +

∑
j

φsj

∫
Dc

σ gradw0
j .u

 =

∑
s

∫
T
ψs (t)

[∑
l

Jsl

∫
D

w2
l .u +

∑
l

1
µ
Bsl

∫
D

w2
l . rot u +

∑
l

HΓ
sl

∫
ΓH

(
w1

l × n
)
.u
]

∑
s

∫
T
ψs (t)

∑
i

A∂
si

∫
Dc

σw1
i .gradv +

∑
j

φsj

∫
Dc

σ gradw0
j .gradv

 =

∑
s

∫
T
ψs (t)

[∑
l

JΓ
sl

∫
ΓH

(
w2

l × n
)
v

]
(9.65)

We apply the Galerkin method, with the test function:

u = w1
fψp

et

v = w0
gψp

to finally obtain the following system of equations:



∫
Tw

ψp

∫
D

K (rotA) · rotw1
f +

∑
s

[∫
Tw

ψsψp

][∑
i

A∂
si

∫
Dc

σw1
i · w1

f +
∑

j

φsj

∫
Dc

σgradw0
j · w1

i

]

=
∑

s

[∫
Tw

ψsψp

][∑
l

J0
sl

∫
D

w2
l · w1

f +
∑

l

1
µ
Bsl

∫
D

w2
l · rot w1

f +
∑

l

HΓ
sl

∫
ΓH

(w1
l × n) · w1

f

]

∑
s

[∫
Tw

ψsψp

][∑
i

A∂
si

∫
Dc

σw1
i · gradw0

g +
∑

j

φsj

∫
Dc

σgradw0
j · gradw0

g

]
=∑

s

[ ∫
Tw

ψsψp

][∑
l

JΓ
sl

∫
ΓH

(w2
l × n)w0

g

]
(9.66)

with:

1 ≤ f ≤ n1, 1 ≤ g ≤ n0, 1 ≤ s, p ≤ Nt

By considering the decomposition hypothesis of the non-linear magnetic constitutive relation,

H = νpf rotA + Knl (rotA)

we obtain:
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∫
Tw

ψp

∫
D

Knl(rotA) · rotw1
f +

∑
s

[ ∫
Tw

ψsψp

][∑
i

Asi

∫
D
νpf rotw1

i · rotw1
f +

∑
i

A
∂

si

∫
Dc

σwi
1 · w1

f

+
∑

j

φsj

∫
Dc

σgradw0
j · w1

f

]
=
∑

s

[∫
Tw

ψsψp

][∑
l

J0
sl

∫
D

w2
l · w1

f +
∑

l

1
µ
Bsl

∫
D

w2
l · rot w1

f

+
∑

l

HΓ
sl

∫
ΓH

(w1
l × n) · w1

f

]
∑

s

[∫
Tw

ψsψp

][∑
i

A∂
si

∫
Dc

σw1
i · gradw0

g +
∑

j

φsj

∫
Dc

σgradw0
j · gradw0

g

]
=∑

s

[∫
Tw

ψsψp

][∑
l

JΓ
sl

∫
ΓH

(w2
l × n)w0

g

]
(9.67)

9.4.2.3 Formulation T - Ω

The weak formulation is written:

∫
T

∫
D

[
1
σ

rotT . rotT′ + T′ .
∂

∂t
µ (T − grad Ω)

]
dD −

∫
T

∫
∂D

(E × n) .T′ dγ =∫
T

∫
D

[
1
σ

rotHs . rotT′ + T′ .
∂

∂t
(µHs + Br)

]
dD (5.53)

∫
T

∫
D

[
gradΩ′ .

∂

∂t
µ (T − grad Ω)

]
dD −

∫
T

∫
∂D

(E × n) .gradΩ′ dγ =∫
T

∫
D

[
gradΩ′ .

∂

∂t
(µHs + Br)

]
dD (5.54)

In this formulation, the relation between the magnetic field H and the flux density B is linear.
As a result, the magnetic permeability µ is constant. This changes the previous expressions:

∫
T

∫
D

[
1
σ

rotT . rotT′ + T′ . µ

(
∂

∂t
T − grad ∂

∂t
Ω
)]

dD −
∫

T

∫
∂D

(E × n) .T′ dγ =∫
T

∫
D

[
1
σ

rotHs . rotT′ + T′ .

(
µ
∂

∂t
Hs + ∂

∂t
Br

)]
dD (9.68)

∫
T

∫
D

[
gradΩ′ . µ

(
∂

∂t
T − grad ∂

∂t
Ω
)]

dD −
∫

T

∫
∂D

(E × n) .gradΩ′ dγ =∫
T

∫
D

[
gradΩ′ .

(
µ
∂

∂t
Hs + ∂

∂t
Br

)]
dD (9.69)

One way to solve the system of equations 9.68 and 9.69 is to apply the Galerkin method. The
discrete weak form of the magnetodynamic problem can be obtained by applying the weighted
residuals and the Galerkin method to previous system of equations or by discretising the dependent
degrees of freedom of time on C, i.e. by writing the values T, Ω, Hs and Br as linear combinations
of space functions (belonging to W1, W1 or W2) and time functions (the indices of T (x, t) and
Ω (x, t) such that we find the notation chosen previously for XT and XΩ):
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T (x, t) =
∑
s,i

Ts,i w1
i (x) ψs (t) (9.70)

∂tT (x, t) =
∑
s,i

T ∂
s,i w1

i (x) ψs (t) (9.71)

Ω (x, t) =
∑
s,j

Ωs,j w
0
j (x) ψs (t) (9.72)

∂

∂t
Ω (x, t) =

∑
s,j

Ω∂
s,j w

0
j (x) ψs (t) (9.73)

Hs (x, t) =
∑
s,l

Hss,l w1
l (x) ψs (t) (9.74)

∂

∂t
Hs (x, t) =

∑
s,l

Hs∂
s,l w1

l (x) ψs (t) (9.75)

Br (x, t) =
∑
s,l

Brs,l

(
w2

l (x) × n
)
ψs (t) (9.76)

∂

∂t
Br (x, t) =

∑
s,l

Br∂
s,l

(
w2

l (x) × n
)
ψs (t) (9.77)

By introducing expressions 9.70 to 9.77 into 9.68 and 9.69, the discrete weak form of the
problem is written:

∑
s

∫
T
ψs (t)

∑
i

Ts,i

∫
D

1
σ

rot w1
i (x) . rotT′ dD

+
∑

s

∫
T
ψs (t)

∑
i

T ∂
s,i

∫
D
µT′ .w1

i (x) dD

−
∑

s

∫
T
ψs (t)

∑
j

Ω∂
s,j

∫
D
µT′ .gradw0

j (x) dD

−
∫

T

∫
∂D

(E × n) .T′ dγ =∑
s

∫
T
ψs (t)

∑
l

Hs∂
s,l

∫
D

1
σ

rotw1
l . rotT′ dD

+
∑

s

∫
T
ψs (t)

∑
l

Hs∂
s,l

∫
D
µT′ .w1

l dD

+
∑

s

∫
T
ψs (t)

∑
l

Br∂
s,l

∫
D

T′ .w2
l dD (9.78)

∑
s

∫
T
ψs (t)

∑
i

T ∂
s,i

∫
D
µ gradΩ′ .w1

i (x) dD

−
∑

s

∫
T
ψs (t)

∑
j

Ω∂
s,j

∫
D
µ gradΩ′ .gradw0

j (x) dD −
∫

T

∫
∂D

(E × n) .gradΩ′ dγ =

∑
s

∫
T
ψs (t)

∑
l

Hs∂
s,l

∫
D

gradΩ′ . µw1
l (x) dD

+
∑

s

∫
T
ψs (t)

∑
l

Br∂
s,l

∫
D

gradΩ′ .
(
w2

l (x) × n
)
dD (9.79)
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We apply the Galerkin method, with the test function:

T′ = w1
fψp

and

Ω′ = w0
gψp

to finally obtain the following system of equations:

∑
s

∫
T
ψs (t) ψp (t)

∑
i

Ts,i

∫
D

1
σ

rot w1
i (x) . rotw1

f dD

+
∑

s

∫
T
ψs (t) ψp (t)

∑
i

T ∂
s,i

∫
D
µw1

f .w1
i (x) dD

−
∑

s

∫
T
ψs (t) ψp (t)

∑
j

Ω∂
s,j

∫
D
µw1

f .gradw0
j (x) dD

−
∫

T

∫
∂D

(E × n) .T′ dγ =∑
s

∫
T
ψs (t) ψp (t)

∑
l

Hs∂
s,l

∫
D

1
σ

rotw1
l . rotw1

f dD

+
∑

s

∫
T
ψs (t) ψp (t)

∑
l

Hs∂
s,l

∫
D
µw1

f .w1
l dD

+
∑

s

∫
T
ψs (t) ψp (t)

∑
l

Br∂
s,l

∫
D

w1
f .w2

l dD (9.80)

∑
s

∫
T
ψs (t) ψp (t)

∑
i

T ∂
s,i

∫
D
µ gradw0

g .w1
i (x) dD

−
∑

s

∫
T
ψs (t) ψp (t)

∑
j

Ω∂
s,j

∫
D
µ gradw0

g .gradw0
j (x) dD −

∫
T

∫
∂D

(E × n) .gradΩ′ dγ =

∑
s

∫
T
ψs (t) ψp (t)

∑
l

Hs∂
s,l

∫
D

gradw0
g . µw1

l (x) dD

+
∑

s

∫
T
ψs (t) ψp (t)

∑
l

Br∂
s,l

∫
D

gradw0
g .
(
w2

l (x) × n
)
dD (9.81)

9.5 Time discretisation
9.5.1 Weak form discretisation
The backward Euler method is used in the time-based version of code_Carmel. It consists in
writing, for a variable U [Dhatt, Thouzot 1984]:

U̇t+∆t ≃ 1
∆t (Ut+∆t − Ut) (9.82)

If we index the variable:

n → t
n+ 1 → t+ ∆t
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then the previous expression becomes:

U̇n+1 = 1
∆t (Un+1 − Un) (9.83)

9.5.2 Magnétodynamique

9.5.2.1 Formulation A - φ

The expression obtained previously for the weak integral form of vector magnetic potential and
scalar electric potential is:

∫
D

[
1
µ

rotw′1
a . rotA + σw′1

a .

(
∂A
∂t

+ gradφ
)]

dD =
∫

D
Js .w′1

a dD +
∫

D

1
µ

Br .w′1
a dD∫

D
σ gradw′0

n

(
∂A
∂t

+ gradφ
)
dD = 0

(9.39)
These expressions are rewritten at time i+ 1 for the time-dependent variables:

∫
D

[
1
µ

rotw′1
a . rotA(i+1) + σw′1

a .

(
∂A
∂t (i+1)

+ gradφ(i+1)

)]
dD =

∫
D

Js(i+1) .w′1
a dD

+
∫

D

1
µ

Br .w′1
a dD∫

D
σ gradw′0

n

(
∂A
∂t (i+1)

+ gradφ(i+1)

)
dD = 0

(9.84)
By applying the backward Euler method, the system of equations becomes:

∫
D

[
1
µ

rotw′1
a . rotA(i+1) + σw′1

a .

(A(i+1)

∆t + gradφ(i+1)

)]
dD =

∫
D

Js(i+1) .w′1
a dD

+
∫

D

1
µ

Br .w′1
a dD +

∫
D
σw′1

a

A(i)

∆t dD∫
D
σ gradw′0

n

(A(i+1)

∆t + gradφ(i+1)

)
dD =

∫
D
σ gradw′0

n

A(i)

∆t dD

(9.85)

We know that we can write:

A(i+1) =
n1∑

a=1
aa(i+ 1) w1

a

A(i) =
n1∑

a=1
aa(i) w1

a

φ(i+1) =
n0∑

n=1
ϕn(i+ 1)w0

n

(9.86)

The system of equations thus becomes:
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n1∑
a=1

aa(i+ 1)
[∫

D

1
µ

rotw′1
a . rotw1

a dD + 1
∆t

∫
D
σw′1

a .w1
a dD

]
+

n0∑
n=1

ϕn(i+ 1)
∫

D
σw′1

a w
0
ndD =

∫
D

Js(i+1) .w′1
a dD +

∫
D

1
µ

Br .w′1
a dD+

n1∑
a=1

aa(i) 1
∆t

∫
D
σw′1

a .w1
a dD

(9.87)

n1∑
a=1

aa(i+ 1) 1
∆t

∫
D
σ gradw′0

n w1
a dD +

n0∑
n=1

ϕn(i+ 1)
∫

D
σ gradw′0

n gradw0
ndD =

+
n1∑

a=1
aa(i) 1

∆t

∫
D
σ gradw′0

n w1
a dD

(9.88)

9.5.2.2 Formulation T-Ω

The expression obtained previously for the weak integral form of vector electric potential and
scalar magnetic potential is:

∫
D

[
1
σ

rotT . rotw′1
a + w′1

a .
∂

∂t
µ (T − grad Ω)

]
dD =∫

D

[
1
σ

rotHs . rotw′1
a + w′1

a .
∂

∂t
(µHs + Br)

]
dD (9.48)

∫
D

[
gradw′0

n . µ (T − grad Ω)
]
dD =

∫
D

[
gradw′0

n . (µHs + Br)
]
dD (9.49)

Only the first equation is explicitly time dependent. Given the backward Euler method dis-
cretisation, it becomes:

∫
D

[
1
σ

rotT(i+1) . rotw′1
a + w′1

a .
1

∆tµ
(

T(i+1) − T(i) − grad(i+1) + grad(i) Ω
)]

dD =∫
D

[
1
σ

rotHs . rotw′1
a + w′1

a .
1

∆t
(
µHs(i+1) − Hs(i) + Br(i+1) − Br(i)

)]
dD (9.89)

and further:

∫
D

[
1
σ

rotT(i+1) . rotw′1
a + w′1

a .
1

∆tµ
(
T(i+1) − grad Ω(i+1)

)]
dD =∫

D

[
1
σ

rotHs(i+1) . rotw′1
a + w′1

a .
1

∆t
(
µHs(i+1) − µHs(i) + Br(i+1) − Br(i)

)]
dD

+
∫

D
w′1

a .
1

∆tµ
(
T(i) − grad Ω(i)

)
dD (9.90)

9.6 Equations with overall values
9.6.1 Case of an imposed voltage on a wound conductor
We have established an additional equation 3.43 for imposed voltage on a wound conductor:
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d

dt

∫
D

A .N dD +R i = V (9.91)

As before this equation is discretised using the backward Euler method:∫
D

A(i+1)

∆t .N dD −
∫

D

A(i)

∆t .N dD +R i = V (9.92)

We know that we can write:

A(i+1) =
n1∑

a=1
aa(i+ 1) w1

a

A(i) =
n1∑

a=1
aa(i) w1

a

This leads to the additional equation:

n1∑
a=1

aa(i+ 1) 1
∆t

∫
D

w1
a .N dD +R i =

n1∑
a=1

aa(i) 1
∆t

∫
D

w1
a .N dD (9.93)

9.6.2 Case of a surface insulator
This property is only found in the spectral version.

To simplify the notation, consider a completely conductive domain of study cut into two parts,
denoted D1 and D2 by an insulating surface denoted S. Let M be the mesh of volume finite
elements of the entire domain, M1 the volume sub-mesh associated with sub-domain D1 and M2
that of sub-domain D2. The unknowns in both sub-meshes M1 and M2 are numbered without
considering contact between the two meshes, i.e. the edges and nodes belonging to the insulating
surface have split and different unknowns depending on the sub-mesh considered.

The matrix assembled in the insulation is constructed by considering fictitious volumes. The
electric elementary matrix of a prism is associated with the triangle-type surface finite elements,
and the electric elementary matrix of a hexahedron is associated with the quadrangular surface
elements.

For the magnetic part, only the continuity condition of the magnetic values between the two
isolated sub-domains is considered. This continuity condition is represented mathematically by: L11 . . . L1n

... . . . ...
Ln1 . . . Lnn

AD1
S = AD2

S (9.94)

Where Lij = δij , with δij the Kronecker symbol. Vector AD1
S corresponds to the magnetic

unknowns contained in the insulating surface and viewed from medium D1. The finite element
matrix assembled on the virtual elements associated with the insulator is thus written:(

L 0
0 grad

)
(9.95)

Finally, the total matrix system to be solved in the presence of an insulator is written:

(
RotRot + WW WGradT

WGrad GradGrad

)(
A
φ

)
+
(

L 0
0 grad

)(
Aiso

φiso

)
=
(

J
0

)
(9.96)
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Where Aiso and φiso are the magnetic and electrical unknowns respectively on both sides of
the surface insulation.

9.7 Resolution of discrete problems
9.7.1 Generic matrix notation
In the preceding paragraphs, we have seen that the modelling of electrotechnical devices can
generate a number of different problems, depending on the formulation used and whether or not
electrical or mechanical coupling is taken into account. Using the approaches described above, all
these models can be represented by the following generic problem:

Find X (t) ∈ RN such that:

K dX (t)
dt

+ (Mθ (θ) + M (X)) X (t) = C U (t) , ∀t ∈ [0, T ] , (9.97)

and find θ (t) ∈ R such that:

JM
d2θ (t)
dt2

+ fM
dθ (t)
dt

= ΓB (X) + ΓM (t) (9.98)

9.7.2 Time discretisation
To solve equations 9.97 and 9.98, the time domain [0, T ] is discretised in Nt regular intervals
separated by a time step τ = T

Nt
. The choice of this time step is not insignificant: it should be

small enough to identify the different dynamics of the problem (electrical, magnetic or mechanical).
Hence, we will only solve the problem for Nt time tk = k τ, k = 1, ..., Nt, with the initial conditions
imposed for t0 = 0. We thus define the notation

X
(
tk
)

= Xk, k = 0, ..., N t (9.99)

The next step is to express the time derivatives, namely dX
dt

(
tk
)

and d2θ

dt2
(
tk
)
.

9.7.2.1 Time discretisation of the magnetic equation

To discretise the magnetic equation, we are interested in the expression of the time derivative of
X (t). Here we use a backward Euler method that has the advantage of being both stable and
easily to implement. In this case, the latter is written:

dX
dt

(
tk
)

≃ Xk − Xk−1

τ
k = 1, ..., Nt (9.100)

By putting this expression into the magnetic equation, we write:(
K
τ

+ Mθ (θ) + M
(
Xk
))

Xk = C Uk + K
τ

Xk−1, k = 1, ..., N t (9.101)

9.7.2.2 Time discretisation of the mechanical equation

For the second order mechanical equation in time, we break it down into two first order equations
by introducing Ω = dθ

dt . We thus write:
dΩ
dt

(t) = (JM )−1 (−fM Ω (t) + ΓB (X (t)) + ΓM )

dθ

dt
(t) = Ω (t)

(9.102)
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To solve this expression, a forward Euler method is used for the first and a backward Euler
method for the second. The use of a forward method is consistent, as the time characteristic of
the mechanical equation τM in electrotechnical applications is very large compared with that of
the magnetic problem τB (τB << τM ). Thus, the time discretisation step τ is chosen to be small
compared with τB and hence very much smaller than τM . Thus, the time discretisation error due
to the use of a forward method on the mechanical equation is very low. We thus write:

dΩ
dt

(
tk
)

=
(
dΩ
dt

)k

≃ Ωk+1 − Ωk

τ
(9.103)

Although a forward method could be used on the second equation for the same reasons, a
backward method is preferred because it results in a lower numerical error for an equivalent
complexity of implementation. Thus, we have:

dθ

dt

(
tk
)

=
(
dθ

dt

)k

≃ θk − θk−1

τ
(9.104)

The discretisation of these two equations is thus written:
Ωk =

(
1 − τ fM

JM

)
Ωk−1 + τ

JM

(
ΓB

(
Xk−1)+ ΓM

)
θk = θk−1 + τ Ωk

(9.105)

9.7.2.3 Time discretisation of the generic problem

Finally, time discretisation of the generic problem is written:

Find Xk (t) ∈ RN such that:(
K
τ

+ Mθ (θ) + M
(
Xk
))

Xk = C Uk + K
τ

Xk−1, k = 1, ..., N t (9.106)

and find
(
θk+1,Ωk+1) ∈ R2 such that:
Ωk+1 =

(
1 − τ fM

JM

)
Ωk + τ

JM

(
ΓB

(
Xk
)

+ ΓM

)
θk+1 = θk + τ Ωk+1

, k = 0, ..., Nt − 1 (9.107)

Remark 9.7.1 To explain the chaining of the two models, the mechanical equation has been writ-
ten at time step k + 1. By knowing θk, equation 9.106 allows calculation of Xk. And by knowing
Xk, the set of mechanical equations 9.107 allows calculation of θk+1 making it possible to obtain
Xk+1 and so on.



Part III

Construction of the matrix system
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Chapter 10

Implementation of Finite Element
Method in code_Carmel

Résumé
In [Nédélec 1992] or [Henneron 2004] and in Chapter 2 of [Girault 2006] we find a description of
the mixed finite elements to be used to discretise variational formulations A − ϕ and T − Ω. In
code_Carmel, we use the following finite elements:

• scalar of class Hgrad (nodal finite elements);

• vector of class Hrot (edge finite elements or Nedélec finite elements);

• vector of class Hdiv (facet finite elements or Raviart-Thomas finite elements).

These elements have been interpreted geometrically as Whitney elements by Alain Bossavit,
and we refer to [Bossavit, Vérité 1983] for a detailed presentation of this aspect. Here, we follow
[Girault 2006].

10.1 Finite elements used
A finite element is defined by:

• a geometric element K: in code_Carmel, the geometric element belongs to R3 and can be a
tetrahedron (T ), a prism (Pr), a hexahedron (H), a pyramid (Py);

• a vector space of dimension N of scalar or vector functions defined on K denoted PK . In
code_Carmel, the approximating spaces are polynomial spaces, either scalar or vector. A
basis of the approximating space is called a basis function;

• a set of N linear shapes on the space of scalar or vector functions defined on K: the degrees
of freedom.

For each geometric element, we define the finite element of lowest degree of class H1, the finite
element of lowest degree of class Hrot and the finite element of lowest degree of class Hdiv.

For each geometric element, a special representative is introduced: the reference element (T̂ ,
P̂ r, Ĥ or P̂ y). The basis functions defined on this element will be transformed to construct the
basis functions of any element of the triangulation. The coordinates in an orthonormal coordinate
system are denoted (u, v, w).
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10.2 Reference elements and shape functions used
10.2.1 Case of the tetrahedron
The geometric element T is a tetrahedron defined by its 4 vertices (si)i=1,4. There are 6 edges
(ai)i=1,6 and 4 facets (f i)i=1,4.

The reference tetrahedron T̂ has vertices:

s1 = (0, 0, 0), s2 = (1, 0, 0), s3 = (0, 1, 0), s4 = (0, 0, 1).

The numbering of nodes, edges and facets of T̂ is shown in Figure 10.1.

Figure 10.1: Illustration of the reference tetrahedron

10.2.1.1 Finite element P1 de classe H1

The approximating space PT is the space P1 of polynomials with 3 real variables, of real value:

PT = P1 =
{
p, p(x) = co + c1.x, co ∈ R, c1 ∈ R3}
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This space is of dimension 4.

The degrees of freedom are the values at the vertices of the tetrahedron, hence the name of
nodal finite elements:

ΣT =
{
σi/σi(f) = f(si), i = 1, 4

}
and the basis functions are the barycentric coordinates (λi)i = 1, 4 defined at any point x by:

4∑
j=1

sj λj(x) = x ,

4∑
j=1

λj(x) = 1

We denote w0
n the basis function associated with vertex n, i.e. w0

n = λn.

For the reference tetrahedron, the basis functions are as follows:

w0
1(u, v, w) = 1 − u− v − w

w0
2(u, v, w) = u

w0
3(u, v, w) = v

w0
4(u, v, w) = w

(10.1)

10.2.1.2 Finite element of class Hrot

The approximating space PT is included in the space P1 of polynomials with 3 real variables,
with a value in R3:

P1 = (P1)3

More precisely, PT is the dimension 6 space defined by:

PT =
{

p ∈ (P1)3,p(x) = c0 + c1 ∧ x, c0, c1 ∈ R3}
The degrees of freedom are the circulations on the edges of T :

ΣT =
{
σi/σi(f) =

∫
ai

f ds, i = 1, 4
}

Denoting T the signed volume of the tetrahedron. We have:

T = 1
6(a1 ∧ a2).a3

Remark 10.2.1 For a tetrahedron orientated like the reference tetrahedron, the mixed product
(a1 ∧ a2).a3 is positive.

The basis function associated with edge i is denoted w1
i . We have [Nédélec 1992]:

w1
1(x) = a6 ∧ (x− s3)

6T , w1
2(x) = −a5 ∧ (x− s2)

6T

w1
3(x) = a4 ∧ (x− s2)

6T , w1
4(x) = a3 ∧ (x− s1)

6T

w1
5(x) = − a2 ∧ (x− s1)

6T , w1
6(x) = a1 ∧ (x− s1)

6T

(10.2)

Another expression of the basis function relative to the edge connecting si and sj is:
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λi.grad(λj) − λj .grad(λi) (10.3)

We obtain the basis functions for the reference tetrahedron T̂ from 10.3:

w1
1(u, v, w) =

 1 − v − w
u
u

 w1
2(u, v, w) =

 v
1 − v − w

v


w1

3(u, v, w) =

 w
w

1 − v − w

 w1
4(u, v, w) =

 −v
u
0


w1

5(u, v, w) =

 −w
0
u

 w1
6(u, v, w) =

 0
−w
v


(10.4)

The curls of the basis functions (w1
i )i=1,6 are constant in each tetrahedron. In the reference

tetrahedron, they are given by:

rot(w1
1)(u, v, w) = 2

 0
−1
1

 rot(w1
2)(u, v, w) = 2

 1
0

−1


rot(w1

3)(u, v, w) = 2

 −1
1
0

 rot(w1
4)(u, v, w) = 2

 0
0
1


rot(w1

5)(u, v, w) = 2

 0
−1
0

 rot(w1
6)(u, v, w) = 2

 1
0
0


(10.5)

10.2.1.3 Finite element of class Hdiv

The approximating space PT is a sub-space of dimension 4 of space P1.

PT =
{

p ∈ P1,p(x) = c0 + c1 x, c0 ∈ R3, c1 ∈ R
}

The degrees of freedom are the fluxes through the facets fi of T:

ΣT =
{
σi/σi(g) =

∫
fi

(g.n ds), i = 1, 4
}

The basis functions associated with the faces of the tetrahedron are given by:

w2
1(u, v, w) = s4 − x

3 |T |
w2

2(u, v, w) = s3 − x

3 |T |

w2
3(u, v, w) = s2 − x

3 |T |
w2

4(u, v, w) = s1 − x

3 |T |

(10.6)

In code_Carmel , the general formula is used for the basis function relating to face i,j,k
([Geuzaine 2001] p.41)

2 (w0
i gradw0

j ∧ gradw0
k + w0

j gradw0
k ∧ gradw0

i + w0
k gradw0

i ∧ gradw0
j )

We thus have the following expressions for the basis functions relative to the facets of tetrahe-
dron T̂ :
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w2
1(u, v, w) = 2 (w0

1 gradw0
2 ∧ gradw0

3 + w0
2 gradw0

3 ∧ gradw0
1

+w0
3 gradw0

3 ∧ gradw0
2)

w2
2(u, v, w) = 2 (w0

1 gradw0
2 ∧ gradw0

4 + w0
2 gradw0

4 ∧ gradw0
1

+w0
4 gradw0

1 ∧ gradw0
2)

w2
3(u, v, w) = 2 (w0

1 gradw0
3 ∧ gradw0

4 + w0
3 gradw0

4 ∧ gradw0
1

+w0
4 gradw0

1 ∧ gradw0
3)

w2
4(u, v, w) = 2 (w0

2 gradw0
3 ∧ gradw0

4 + w0
3 gradw0

4 ∧ gradw0
2

+w0
4 gradw0

2 ∧ gradw0
3)

(10.7)

Remark 10.2.2 According to [Deliège 2003] (p. 183), the expression of the basis functions can
also be used directly.

w2
1(u, v, w) = 2

 u
v

−1 + w


w2

2(u, v, w) = 2

 u
−1 + v
w


w2

3(u, v, w) = 2

 −1 + u
v
w


w2

4(u, v, w) = 2

 u
v
w



(10.8)

10.2.1.3.1 Case of the prism
The geometric element Pr is a right prism defined by its 6 vertices (si)i=1,6. There are 9 edges

(ai)i=1,9 and 4 facets (f i)i=1,5 (3 rectangular and 2 triangular).

The reference prism P̂ r has vertices:

s1 = (0, 0,−1), s2 = (1, 0,−1), s3 = (0, 1,−1),
s4 = (0, 0, 1), s5 = (1, 0, 1), s6 = (0, 1, 1).

The numbering of nodes, edges and facets of P̂ r is shown in Figure 10.2.

Finite element of class H1 We consider the reference prism: the triangular face is in the
plane (u, v). The approximating space PP is a space of dimension 6. This is the set of polynomials
of 3 real variables, of degree 1 in (u, v) and degree 1 in w.

PP = {p : (u, v, w) 7→ p(u, v, w) = q(u, v) r(w), q ∈ P1(u, v), r ∈ P1(w)}

Remark 10.2.3 This space is included in that of polynomials of degree 2 (and not 1).

The degrees of freedom are the values at the vertices of the prism:

ΣP =
{
σi/σi(f) = f(si), i = 1, 6

}
The basis functions w0 for the reference prism are given by:
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Figure 10.2: Illustration of the reference prism

w0
1(u, v, w) = 1

2 (1 − u− v) (1 − w)

w0
2(u, v, w) = 1

2 u (1 − w)

w0
3(u, v, w) = 1

2 v (1 − w)

w0
4(u, v, w) = 1

2 (1 − u− v) (1 + w)

w0
5(u, v, w) = 1

2 u (1 + w)

w0
6(u, v, w) = 1

2 v (1 + w)

(10.9)

Finite element of class Hrot The approximating space PP is a sub-space of P1 of dimension
9:
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PP =

p : (u, v, w) 7→ p(u, v, w) =

 α1 + β v + γ1 w + δ v w
α2 − β v + γ2 w − δ uw

α3 + ϵ1 u+ ϵ2 v


where: α1, α2, α3, β, γ1, γ2, δ, ϵ1, ϵ2 are real coefficients.

The degrees of freedom are the circulations on the edges of P :

ΣT =
{
σi/σi(f) =

∫
ai

f ds, i = 1, 9
}

The basis function relative to the edge joining node i and node j is given by the formula
([Geuzaine 2001] p. 41):

w0
j grad

∑
r∈N (j,i)

w0
r − w0

i grad
∑

r∈N (i,j)

w0
r (10.10)

where N (m,n) is the set of nodes on the face that contains node m and not node n.

The basis functions associated with the edges of reference prism P̂ are:

w1
1(u, v, w) = 1

2 (1 − w)

 1 − v
u
0

 w1
2(u, v, w) = 1

2 (1 − w)

 v
1 − u

0


w1

3(u, v, w) = 1
2

 0
0

1 − u− v

 w1
4(u, v, w) = 1

2 (1 − w)

 −v
u
0


w1

5(u, v, w) = 1
2

 0
0
u

 w1
6(u, v, w) = 1

2

 0
0
v


w1

7(u, v, w) = 1
2 (1 + w)

 1 − v
1 − u

0

 w1
8(u, v, w) = 1

2 (1 + w)

 v
1 − u

0


w1

9(u, v, w) = 1
2 (1 + w)

 −v
u
0



(10.11)

Finite element of class Hdiv The basis function relative to facet f containing nodes i, j, k
(and l if it is a quadrangular facet) is obtained by applying the general formula ([Geuzaine 2001]
p.41).

w2 = a
∑

q∈N (f)

w0
q grad

 ∑
r∈N (q)(q+1)

w0
r

 ∧ grad

 ∑
r∈N (q)(q−1)

w0
r

 (10.12)

where a is equal to 2 if f is triangular and 1 if f is quadrangular.

The basis functions relative to the facets of reference prism T̂ are:
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w2
1(u, v, w) = 2

[
w0

1 grad(w0
2 + w0

5) ∧ grad(w0
3 + w0

6)
+w0

2 grad(w0
3 + w0

6) ∧ grad(w0
1 + w0

4)
+w0

3 grad(w0
1 + w0

4) ∧ grad(w0
2 + w0

5)
]

w2
2(u, v, w) = 2

[
w0

4 grad(w0
2 + w0

5) ∧ grad(w0
3 + w0

6)
+w0

5 grad(w0
3 + w0

6) ∧ grad(w0
1 + w0

4)
+w0

6 grad(w0
1 + w0

4) ∧ grad(w0
2 + w0

5)
]

w2
3(u, v, w) = w0

1 grad(w0
2 + w0

5) ∧ grad(w0
4 + w0

5 + w0
6)

+w0
2 grad(w0

4 + w0
5 + w0

6) ∧ grad(w0
1 + w0

4)
+w0

4 grad(w0
1 + w0

2 + w0
3) ∧ grad(w0

2 + w0
5)

+w0
5 grad(w0

1 + w0
4) ∧ grad(w0

1 + w0
2 + w0

3)

w2
4(u, v, w) = w0

2 grad(w0
3 + w0

6) ∧ grad(w0
4 + w0

5 + w0
6)

+w0
3 grad(w0

4 + w0
5 + w0

6) ∧ grad(w0
1 + w0

4)
+w0

5 grad(w0
1 + w0

2 + w0
3) ∧ grad(w0

3 + w0
6)

+w0
6 grad(w0

2 + w0
5) ∧ grad(w0

1 + w0
2 + w0

3)

(10.13)

10.2.1.3.2 Case of the hexahedron
The geometric element H is a right prism defined by its 8 vertices (si)i=1,8. There are 12 edges

(ai)i=1,12 and 6 facets (f i)i=1,6.

The reference hexahedron P̂ has vertices:

s1 = (−1,−1,−1), s2 = (1,−1,−1), s3 = (1, 1,−1), s4 = (−1, 1, 1),
s5 = (−1,−1, 1), s6 = (1,−1, 1), s7 = (1, 1, 1), s8 = (−1, 1, 1),

The numbering of nodes, edges and facets of Ĥ is shown in Figure 10.3.

Finite elements Q1 of class H1 The approximating space PH is the space of polynomials
of degree 1 in each of the variables u, v, w. It is a space of dimension 8.

PH = Q1 = {p : (u, v, w) 7→ p(u, v, w) = q(u) r(v) s(w), q ∈ P1(u), r ∈ P1(v), s ∈ P1(w)}

The degrees of freedom are the values at the vertices of the hexahedron:

ΣH =
{
σi/σi(f) = f(si), i = 1, 8

}
The basis functions w0 for reference hexahedron Ĥ are given by:
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Figure 10.3: Illustration of the reference hexahedron

w0
1(u, v, w) = 1

8 (1 − u) (1 − v) (1 − w)

w0
2(u, v, w) = 1

8 (1 + u) (1 − v) (1 − w)

w0
3(u, v, w) = 1

8 (1 + u) (1 + v) (1 − w)

w0
4(u, v, w) = 1

8 (1 − u) (1 + v) (1 − w)

w0
5(u, v, w) = 1

8 (1 − u) (1 − v) (1 + w)

w0
6(u, v, w) = 1

8 (1 + u) (1 − v) (1 + w)

w0
7(u, v, w) = 1

8 (1 + u) (1 + v) (1 + w)

w0
8(u, v, w) = 1

8 (1 − u) (1 + v) (1 + w)

(10.14)
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Finite element of class Hrot The approximating space PH is a sub-space of polynomials
of degree 2 of dimension 12:

PP =

p : (u, v, w) 7→ p(u, v, w) =

 α1 + β1 v + γ1 w + δ1 v w
α2 + β2 u+ γ2 w + δ2 uw
α3 + β3 u+ γ3 v + δ3 u v


where: α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3 are real coefficients.

The degrees of freedom are the circulations on the edges of H:

ΣP =
{
σi/σi(f) =

∫
ai

f ds, i = 1, 12
}

The basis functions associated with the edges of reference hexahedron Ĥ are calculated from
10.10:

w1
1(u, v, w) = 1

8

 (1 − v) (1 − w)
0
0

 w1
2(u, v, w) = 1

8

 0
(1 − u) (1 − w)

0


w1

3(u, v, w) = 1
8

 0
0

(1 − u) (1 − v)

 w1
4(u, v, w) = 1

8

 0
(1 + u) (1 − w)

0


w1

5(u, v, w) = 1
8

 0
0

(1 + u) (1 − v)

 w1
6(u, v, w) = 1

8

 (1 + v) (1 + w)
0
0


w1

7(u, v, w) = 1
8

 0
0

(1 − u) (1 + v)

 w1
8(u, v, w) = 1

8

 0
0

(1 + u) (1 + v)


w1

9(u, v, w) = 1
8

 (1 − v) (1 + w)
0
0

 w1
10(u, v, w) = 1

8

 0
(1 − u) (1 + w)

0


w1

11(u, v, w) = 1
8

 0
(1 + u) (1 + w)

0

 w1
12(u, v, w) = 1

8

 (1 + v) (1 + w)
0
0


(10.15)

Finite element of class Hdiv The basis functions relative to the facets of reference prism
T̂ are obtained by applying the general formula 10.12:
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w2
1(u, v, w) = w0

1 grad(w0
1 + +w0

4 + w0
5 + w0

8) ∧ grad(w0
1 + +w0

2 + w0
5 + w0

6)
+w0

2 grad(w0
1 + +w0

2 + w0
5 + w0

6) ∧ grad(w0
2 + w0

3 + w0
6 + w0

7)
+w0

3 grad(w0
2 + w0

3 + w0
6 + w0

7) ∧ grad(w0
3 + w0

4 + w0
7 + w0

8)
+w0

4 grad(w0
3 + w0

4 + w0
7 + w0

8) ∧ grad(w0
1 + +w0

4 + w0
5 + w0

8)

w2
2(u, v, w) = w0

1 grad(w0
1 + +w0

4 + w0
5 + w0

8) ∧ grad(w0
1 + w0

2 + w0
3 + w0

4)
+w0

2 grad(w0
1 + w0

2 + w0
3 + w0

4) ∧ grad(w0
2 + w0

3 + w0
6 + w0

7)
+w0

5 grad(w0
5 + w0

6 + w0
7 + w0

8) ∧ grad(w0
1 + w0

4 + w0
5 + w0

8)
+w0

6 grad(w0
2 + w0

3 + w0
6 + w0

7) ∧ grad(w0
5 + w0

6 + w0
7 + w0

8)

w2
3(u, v, w) = w0

1 grad(w0
1 + w0

2 + w0
5 + w0

6) ∧ grad(w0
1 + w0

2 + w0
3 + w0

4)
+w0

4 grad(w0
1 + w0

2 + w0
3 + w0

4) ∧ grad(w0
3 + w0

4 + w0
7 + w0

8)
+w0

5 grad(w0
5 + w0

6 + w0
7 + w0

8) ∧ grad(w0
1 + w0

2 + w0
5 + w0

6)
+w0

8 grad(w0
3 + w0

4 + w0
7 + w0

8) ∧ grad(w0
5 + w0

6 + w0
7 + w0

8)

w2
4(u, v, w) = w0

2 grad(w0
1 + w0

2 + w0
5 + w0

6) ∧ grad(w0
1 + w0

2 + w0
3 + w0

4)
+w0

3 grad(w0
1 + w0

2 + w0
3 + w0

4) ∧ grad(w0
3 + w0

4 + w0
7 + w0

8)
+w0

6 grad(w0
5 + w0

6 + w0
7 + w0

8) ∧ grad(w0
1 + +w0

2 + w0
5 + w0

6)
+w0

7 grad(w0
3 + w0

4 + w0
7 + w0

8) ∧ grad(w0
5 + w0

6 + w0
7 + w0

8)

w2
5(u, v, w) = w0

3 grad(w0
2 + w0

3 + w0
6 + w0

7) ∧ grad(w0
1 + w0

2 + w0
3 + w0

4)
+w0

4 grad(w0
1 + w0

2 + w0
3 + w0

4) ∧ grad(w0
1 + w0

4 + w0
5 + w0

8)
+w0

7 grad(w0
5 + w0

6 + w0
7 + w0

8) ∧ grad(w0
2 + +w0

3 + w0
6 + w0

7)
+w0

8 grad(w0
1 + w0

4 + w0
5 + w0

8) ∧ grad(w0
5 + w0

6 + w0
7 + w0

8)

w2
6(u, v, w) = w0

5 grad(w0
1 + w0

4 + w0
5 + w0

8) ∧ grad(w0
1 + w0

2 + w0
5 + w0

6)
+w0

6 grad(w0
1 + w0

2 + w0
5 + w0

6) ∧ grad(w0
2 + w0

3 + w0
6 + w0

7)
+w0

7 grad(w0
2 + w0

3 + w0
6 + w0

7) ∧ grad(w0
3 + +w0

4 + w0
7 + w0

8)
+w0

8 grad(w0
3 + +w0

4 + w0
7 + w0

8) ∧ grad(w0
1 + w0

4 + w0
5 + w0

8)

(10.16)

10.2.2 Case of the pyramid
Unlike the prism, hexahedron or tetrahedron, the pyramid is a slightly trickier element because of
its particular connectivity: unlike the classic 3 elements where each node is connected to 3 edges,
the vertex of the pyramid is connected to 4 edges. The result is less regular shape functions.

The pyramid element P̂ y and associated shape functions are derived from the excellent paper by
Gradinaru and Hiptmair [Gradinaru 1999] (which nevertheless contains an error for edge functions
6 and 7), where the shape functions are determined by cutting the pyramid into two tetrahedra.
Their expression can also be found using Whitney formulas. It should be noted that the facet
functions differ in each case, which we will examine more closely. In other versions of Carmel in
which pyramids have been implemented, functions from the paper by Hiptmair have been used.

The reference pyramid is shown in Figure 10.4. The rather unusual numbering is due to
integration with code_Carmel (we will return to this later). Hence, the square base is numbered
to approximate to the numbering of the hexahedra. The edges are defined in order of ascending
index: eij where i < j, and are orientated from node ni to nj .

The faces are also named in order of ascending index: fijk with i < j < k and f1234 for
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Figure 10.4: Reference pyramid

the square base. To simplify the problem, we will consider that all faces are initially orientated
outwards. We will then see how to adjust them according to the rather unusual orientation in
Carmel. Figure 10.5 shows the definition of the 5 faces of the reference element.

We will now present the shape functions used.

10.2.2.1 Nodal shape functions

The nodal functions are used to discretise elements belonging to (H1(Ω))3. The nodal function
associated with a node is 1 on that node, and 0 on all other nodes:

∫
{nj}

wn
i · δnj

= δj
i (10.17)

where δnj
is the Dirac distribution associated with node j, and δj

i , the Kronecker symbol. The
5 nodal functions are:

wn
1 (x, y, z) = (1 − x− z)(1 − y − z)

1 − z
;

wn
2 (x, y, z) = x(1 − y − z)

1 − z
;

wn
3 (x, y, z) = (1 − x− z)y

1 − z
;

wn
4 (x, y, z) = xy

1 − z
;

wn
5 (x, y, z) = z;

It can be seen that they form a partition of the unit on the element.



10.2. REFERENCE ELEMENTS AND SHAPE FUNCTIONS USED 139

Figure 10.5: Reference pyramid

10.2.2.2 Edge shape functions

The “edge” functions are used to discretise elements belonging to H(rot,Ω). They are referred to
as edge functions because their circulation is equal to 1 on the edge with which they are associated,
and 0 otherwise. They thus verify the following property:

∫
ej

we
i · dl = δij (10.18)

Their expression is detailed in the reference paper (which does, however, contain an error for
the component in z on the 6eme and 7eme). They can also be determined using the following
Whitney formula [Geuzaine 2001]. Hence, for the function associated with edge we

ij , orientated
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from i to j, we have:

we
ij = wn

j

∑
r∈N (j,̄i)

∇wr − wn
i

∑
r∈N (i,j̄)

∇wr (10.19)

where N (i, j̄) are the nodes belonging to the faces that contain node i but not node j. For
example, the set N (1, 2̄) represents the nodes belonging to facet f135, and thus we have N (1, 2̄) =
{1, 3, 5}. On the other hand, we have N (5, 1̄), the indices of nodes belonging to facets f245 and
f345, from which N (5, 1̄) = {2, 3, 4, 5}. Finally, the expressions for the edge functions are:

we
12 =


1 − z − y

0

x− xy

1 − z

 , we
13 =


0

1 − z − x

y − xy

1 − z

 , we
24 =


0

x

xy

1 − z

 , we
34 =


y

0

xy

1 − z



we
15 =



z − yz

1 − z

z − xz

1 − z

1 − x− y + xy

1 − z
− xyz

(1 − z)2


, we

25 =



−z + yz

1 − z

xz

1 − z

x− xy

1 − z
+ xyz

(1 − z)2



we
35 =



yz

1 − z

−z + xz

1 − z

y − xy

1 − z
+ xyz

(1 − z)2


, we

45 =



− yz

1 − z

− xz

1 − z

xy

1 − z
− xyz

(1 − z)2



10.2.2.3 Facet shape functions

The shape functions associated with the facets are used to discretise the elements of H(div,Ω).
Their flux is 1 on the facet with which they are associated, and 0 otherwise. They thus verify the
following relation:

∫
fj

wf
i · dn = δij (10.20)

This time, the method developed by Hiptmair and the use of Whitney formulas result in
different expressions. Both nevertheless appear permissible. In both cases, the facet functions are
defined so that their normal is directed towards the outside of the element. When implementing in
code_Carmel„ care should be taken to modify their direction according to the orientation defined
in the data structure.

10.2.2.3.1 Hiptmair approach
The facet functions presented by Hiptmair are as follows:
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wf
125 =


− xz

1 − z

−2 + y + z

1 − z

z

 , wf
135 =


−2 + x+ x

1 − z

− yz

1 − z

z



wf
245 =


x+ x

1 − z

− yz

1 − z

z

 , wf
345 =


− xz

1 − z

y + y

1 − z

z

 , wf
1234 =


x

y

z − 1



10.2.2.3.2 Whitney approach

By analogy with the edge elements, the facet functions can be determined from the nodal
functions. Thus, for facet F consisting of nodes {i, j, k} or {i, j, k, l}, we have:

wf
F = a

∑
q∈N (F)

wn
q

 ∑
r∈N (F,q,q+1)

∇wr

×

 ∑
r∈N (F,q,q−1)

∇wr

 (10.21)

a is here a numerical coefficient equal to 2 if the facet contains 3 nodes, and 1 if it contains
4. N (F , q, q + 1) are the nodes belonging to the faces that contain the qeme node of facet F , but
not the (q + 1)eme (where q + 1 is the next cyclique index). For example, for facet f125 made up
of nodes {1, 2, 5} , we will have to calculate the following 3 × 2 quantities, where q will traverse
the elements of f125 (the left-hand column corresponds to the terms N (f125, q, q + 1) while that
on the right represents N (f125, q, q − 1) ):

N (f125, 1, 2) = {1, 3, 5}, N (f125, 1, 5) = {1, 2, 3, 4}, avec q=1

N (f125, 2, 5) = {1, 2, 3, 4}, N (f125, 2, 1) = {2, 4, 5}, avec q=2

N (f125, 5, 1) = {2, 3, 4, 5}, N (f125, 5, 2) = {1, 3, 4, 5}, avec q=5

The shape functions obtained are as follows:
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wf2
125 =



2xz(z + y − 1)
(1 − z)2

2(z + y − 1)
1 − z

−2z(z + y − 1)
1 − z


, wf2

135 =



2(z + x− 1)
1 − z

2yz(z + x− 1)
(1 − z)2

−2z(z + x− 1)
1 − z



wf2
245 =



2x

− 2xyz
(1 − z)2

2xz
1 − z


, wf2

345 =



− 2xyz
(1 − z)2

2y

2yz
1 − z


, wf2

1234 =


x

y

z − 1



10.2.2.3.3 Comparison of the two types of function
Although in a different form, both types of function are permissible, i.e. they verify equation

(10.20). The shape functions from Whitney’s formalism cancel out on the opposite facet while
those from Hiptmair’s paper change their orientation to remain permissible.

To adopt the same approach as used in other versions of Carmel, we will use the functions
developed in the reference paper. Moreover, these functions seemed to provide better results. This
may be due to the fact that the functions developed by Hiptmair are more regular, and that the
error resulting from Gauss integration is thus less.

10.2.3 Transformation of the reference element into a real element (Cal-
culating the integral)

The Gauss quadrature method [Dhatt, Thouzot 1984] is a widely used numerical integration
method in which the parameters are determined in such a way as to exactly integrate the polyno-
mials.

If we take a polynomial function y (ξ), we replace the integral of this function with a linear
combination of its r values at the integration points ξi:∫ 1

−1
y (ξ) dξ = w1 y (ξ1) + w2 y (ξ2) + ...+ wi y (ξi) + ...+ wr y (ξr) (10.22)

We seek to determine the 2 r coefficients (wi and ξi) for the following polynomial:

y (ξ) = a1 + a2 ξ + ...+ a2r ξ
2r−1

The reader can follow the development of this calculation on page 281 of [Dhatt, Thouzot
1984]. Above all, it should be remembered that the abscissae ξi are also the roots of the Legendre
polynomial of order r:

Pr (ξ) = 0

defined by the recurrence formula:
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P0 (ξ) = 1
P1 (ξ) = ξ
... ... ...

Pk (ξ) = 2 k − 1
k

ξ Pk−1 (ξ) − k − 1
k

Pk−2 (ξ) ; k = 2, 3, ..., r

(10.23)

The weights wi are written:

wi =
2
(
4 − ξ2

i

)
[r Pr−1 (ξ)]2

; i = 1, 2, ..., r (10.24)

The integration error is of the form:

e = 22 r+1 (r!)4

(2 r + 1) [(2 r)!]3
d2 ry

dξ2 r
(10.25)

10.2.4 Calculation of elementary integrals by the Gauss method
10.2.4.1 Case of triangles

A direct method of integration consists in writing:∫ 1

0

∫ 1−ξ

0
y (ξ, η) dξdη ≃

r∑
i=1

wi y (ξi, ηi) (10.26)

An interpolation of order 4 with 6 points is used in a reference triangle.

The six Gauss points are:

p1 =

 a
a

−1

 , p2 =

1 − 2 a
a

−1

 , p3 =

 a
1 − 2 a

−1

 ,

p4 =

 b
b

−1

 , p5 =

1 − 2 b
b

−1

 , p6 =

 b
1 − 2 b

−1

 (10.27)

with:

a = 0.445948490915965D0
b = 0.091576213509771D0

The two weights used are w1 for p1, p2 and p3, and w2 for p4, p5 and p6 with:

w1 = 0.111690794839005D0
w2 = 0.054975871827661D0

10.2.4.2 Case of rectangles

For numerical integration in two dimensions, numerical integration in one dimension is used in
each of the directions ξ and η. The “product” method results in:∫ 1

−1

∫ 1

−1
y (ξ, η) dξdη =

r1∑
i=1

r2∑
j=1

wi wj y (ξi, ηj) (10.28)

where:
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• wi, wj are the coefficients of the integration method;

• ξi, ηj are the coordinates of the corresponding integration points.

The Gauss points are defined for an interpolation of order 5 with 7 points in a reference
rectangle.

The 7 Gauss points used are the following.

p1 =

 0
0, 5
0

 , p2 =

 0
0, 5
a

 , p3 =

 0
0, 5
−a

 , p4 =

 0
b

2 + 0, 5
b

 ,

p5 =

 0
b

2 + 0, 5
−b

 , p6 =

 0
− b

2 + 0, 5
b

 , p7 =

 0
− b

2 + 0, 5
−b

 (10.29)

with:

a =
√

14
15

b =
√

3
5

The three weights used are p for p1, q for p2, p3, r for p4, p5, p6, p7, with:

p =
8
7
2

q =
20
63
2

r =
20
36
2

10.2.4.3 Case of tetrahedra

The formula for direct integration on a tetrahedron is given by:∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0
y (ξ, η, ζ) dξdηdζ =

r∑
i=1

wi y (ξi, ηi, ζi) (10.30)

Three different cases are possible.

In the first case, Gauss points can be defined here for an interpolation of order 3 with 5 points
in a reference tetrahedron.

The 5 Gauss points used are:

p1 =

aa
a

 , p2 =

bb
b

 , p3 =

bb
c

 , p4 =

bc
b

 , p5 =

cb
b

 (10.31)
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with
a = 1

4

b = 1
6

c = 1
2

The three weights used are p for p1, and q for p2, p3, p4, p5, with:

p = − 2
15

q = 3
40

In the second case, Gauss points can be defined here for an interpolation of order 2 with 4
points in a reference tetrahedron.

The 4 Gauss points used are:

p1 =

aa
a

 p2 =

aa
b

 , p3 =

ab
a

 , p4 =

ba
a

 (10.32)

with

a = 5 −
√

5
20

b = 5 + 3
√

5
20

The four weights used are p for p1, p2, p3, p4, with:

p = 1
24

In the third case, Gauss points can be defined here for an interpolation of order 5 with 15
points in a reference tetrahedron.

The 15 Gauss points used are:

p1 =

aa
a

 , p2 =

b1
b1
b1

 , p3 =

b1
b1
c1

 , p4 =

b1
c1
b1

 , p5 =

c1
b1
b1

 , p6 =

b2
b2
b2



p7 =

b2
b2
c2

 , p8 =

b2
c2
b2

 , p9 =

c2
b2
b2

 , p10 =

dd
e

 , p11 =

de
d

 , p12 =

ed
d



p13 =

de
e

 , p14 =

ed
e

 , p15 =

ee
d

 (10.33)

with
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a = 1
4

b = 1
6

c = 1
2

The three weights used are p for p1, and q for p2, p3, p4, p5, with:

p = − 2
15

q = 3
40

10.2.4.4 Case of prisms

The 6 Gauss points used are:

p1 =

aa
b

 , p2 =

a0
b

 ; p3 =

0
a
b

 , p4 =

 a
a

−b

 , p5 =

 a
0

−b

 , p6 =

 0
a

−b

 (10.34)

with

a = 1
2

b = 1√
3

The weight used is p for p1, p2, p3, p4, p5 and p6, with:

p = 1
6

10.2.4.5 Case of hexahedra

The “product” method is written:∫ 1

−1

∫ 1

−1

∫ 1

−1
y (ξ, η, ζ) dξdηdζ =

r1∑
i=1

r2∑
j=1

r3∑
k=1

wi wj wk y (ξi, ηj , ζk) (10.35)

where:

• wi, wj , wk are the coefficients of the integration method;

• ξi, ηj and ζk are the coordinates of the corresponding integration points.

A direct method consists in writing:∫ 1

−1

∫ 1

−1

∫ 1

−1
y (ξ, η, ζ) dξdηdζ =

r1∑
i=1

wi y (ξi, ηi, ζi) (10.36)

We prefer to use Gauss points here for an interpolation of order 5 with 14 points in a reference
hexahedron.
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The 14 Gauss points used are:

p1 =

a0
0

 , p2 =

−a
0
0

 , p3 =

0
a
0

 , p4 =

 0
−a
0

 , p5 =

0
0
a

 ,

p6 =

 0
0

−a

 , p7 =

bb
b

 , p8 =

−b
b
b

 , p9 =

 b
−b
b

 , p10 =

 b
b

−b

 ,

p11 =

−b
−b
b

 , p12 =

−b
b

−b

 , p13 =

 b
−b
−b

 , p14 =

−b
−b
−b

 (10.37)

with

a =
√

19
30

b =
√

19
33

The weights used are p for p1, p2, p3, p4, p5 and p6, and q for p7, p8, p9, p10, p11, p12, p13
and p14, with:

p = 320
361

q = 121
361

It is also possible to use an interpolation method of order 3 with 6 points in a reference
hexahedron.

Remark 10.2.4 The results with this interpolation method are less precise.

The 6 Gauss points used are:

p1 =

 a
b

−c

 , p2 =

 a
−b
−c

 , p3 =

−a
b
c

 , p4 =

−a
−b
c

 , p5 =

−d
0

−c

 , p6 =

d0
c

 (10.38)

with:

a = 1√
6

b = 1√
2

c = 1√
3

d =
√

2
3

The weight used is p for p1, p2, p3, p4, p5, p6 with:

p = 4
3
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Finally, the interpolation method of code_Aster with 8 points can be used.

p1 =

aa
a

 , p2 =

 a
a

−a

 , p3 =

 a
−a
a

 , p4 =

 a
−a
−a

 ,

p5 =

−a
a
a

 , p6 =

−a
a

−a

 , p7 =

−a
−a
a

 , p8 =

−a
−a
−a

 (10.39)

with:

a = 1√
3

The weight used is p for p1, p2, p3, p4, p5, p6, p7, p8, with:

p = 1

10.2.4.6 Case of pyramids

The Gauss points used come from the spectral version of code_Carmel.
The 8 Gauss points used are:

p1 =


a1

a1

h1

 , p2 =


a1

b1

h1

 , p3 =


b1

a1

h1

 , p4 =


b1

b1

h1

 (10.40)

(10.41)

p5 =


a2

a2

h2

 , p6 =


a2

b2

h2

 , p7 =


b2

a2

h2

 , p8 =


b2

b2

h2

 (10.42)

with:

a1 = 0.18543444
b1 = 0.69205074
a2 = 0.09633205
b2 = 0.35951611
h1 = 0.12251482
h2 = 0.54415184

The two weights used are w1 for p1, p2, p3 and p4, and w2 for p5, p6, p7 and p8, with:

w1 = 0.05813686
w2 = 0.02519647

We can verify that the sum of the 8 weights is indeed equal to 1/3, the area of the reference
pyramid.



Chapter 11

Taking motion into account

Abstract
The purpose of this chapter is to describe the methods used in code_Carmel to take into account
the rotational motion of one part in relation to another. Two methods are possible in the time-
based version: blocked step and overlapping. A method specific to the spectral version has been
implemented. Finally, in the time-based version, it is possible to have a mechanical load and hence
a speed resulting from a kinematic equation.

11.1 General principle
To simulate motion in an electromagnetic system (e.g. the motion of the rotor in an electrical ma-
chine), when modelling with the finite element method, various numerical strategies or techniques
may be considered. To this end, there are two types of description: Eulerian and Lagrangian. The
first consists in establishing a fixed baseline from which the various quantities can be observed,
while the second follows a moving baseline. Figure 11.1 shows a mesh on which the motion of the
red sub-domain is calculated using both types of description.

Figure 11.1: Taking motion into account with the Lagrangian and Eulerian descriptions (a):
Initial position of the mesh. (b): Rotation of the red sub-domain with the Eulerian description.
(c): Rotation of the red sub-domain with the Lagrangian description. The notch is properly
discretised, but the elements no longer coincide at the interface between the red and blue sub-
domains.

In the case of finite element modelling, the Eulerian approach thus consists in fixing the mesh of
the rotor and dragging the various media and fields over time. Although it is attractive because it

149
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does not require re-meshing or change of connectivity, dragging the boundaries between media can
be complicated to take into account, as can be seen at the green notch in Figure 11.1 (b). Because
the boundaries of the sub-domains no longer correspond to the boundaries of the elements, it can
be difficult to take account of the discontinuities of the fields.

By contrast, the Lagrangian approach consists in turning the mesh of the rotor, with respect
to that of the stator, in rigid body motion. Hence, the boundaries between media at the rotor and
stator are naturally preserved as shown in Figure 11.1 (c). The real issue here is how to connect
the rotor mesh with the stator mesh during motion. Finally, Maxwell’s equations remain invariant
even for non-rectilinear uniform motion with this type of description. It is thus the Lagrangian
approach that will be used in what follows.

In this context, there are several methods. They differ in particular in their complexity and
their ability or otherwise to take account of any rotational motion. We can nevertheless classify
them into two categories, shown in Figure 11.2.

Figure 11.2: Taking motion into account with the Lagrangian description (a): Motion calculated
on an interface Σθ. (b): Motion calculated in a domain Dθ.

The first category includes approaches where motion is considered along a 2D linear and 3D
surface interface Σθ, as shown in Figure 11.2 (a).

The approaches can be classified as follows [Gasmi 1996], [Boukari 2000], [Rapetti 2000]:

• Introduction of a transport term in v ∧ B (where v represents the speed of movement of
the moving parts) [Maréchal 1991]. This solution can be used under certain conditions and
imposes constraints on the matrix structure of the system to be resolved.

• Modification of the mesh; local re-meshing or mesh deformation in an area incorporating the
boundary between the fixed part and the moving part. Some examples include: the blocked
step method [Preston et al 1988], [Boualem 1997], the motion strip [Vassent 1990], [Bossavit
1993], [Sadowski 1993], [Ren 1996] , and the overlapping method [Tsukerman 1992].

• Coupling the finite element method with another numerical resolution method. In this
case, we define a sub-domain incorporating the boundary between the fixed part and the
moving part. In the fixed and moving parts, with the exception of the sub-domain reserved
for motion, the equations to be solved are discretised using the finite element method. In
the sub-domain, we can use the macro-element that consists in searching for an analytical
solution in part of the air gap [Féliachi 1981], [Razek et al 1982] or a boundary integral
method that brings the space discretisation back to the boundary of the sub-domain, thus
allowing coupling with the finite element method [Féliachi 1981], [Goby 1987].



11.2. BLOCKED STEP METHOD 151

• Recombining the meshes at the interface between the fixed part and the moving part; in
this case we are faced with two so-called “non-compliant” meshes at the sliding surface.
To recombine the two meshes, we can impose the continuity of the unknown value using
interpolation methods [Perrin-Bit 1992], [Dreher et al 1996], [Boukari 2000] or, using the
attached elements method (Mortar) [Rapetti et al 2000], [Rapetti 2000], [Antunes et al 2005]
or Lagrange operators [Rodger et al 1990] For the last two methods, recombination of the
two meshes is achieved by imposing the continuity of a physical value on the recombination
surface.

Among the methods proposed above, the method based on the introduction of a transport term
is of limited use. In addition, the use of the macro-element significantly increases the computation
time and, like the boundary integrals method, leads to the addition, to the stiffness matrix, of a
full matrix that links all the boundary terms. This leads to a greater storage requirement and
relatively long computation time [Gasmi 1996], [Boukari 2000].

As such, for code_Carmel the blocked step method and the overlapping method have been
adopted.

11.2 Blocked step method
It appears that the first work on the “blocked step” method was presented in 1988 by [Preston et
al 1988]. A 3D extension was introduced in 1995 [Kawase et al 1995] and subsequently followed
up [Boualem, Piriou 1998], [Boualem 1997], [Boualem, Piriou 1998b].

11.2.1 Mesh layout with the blocked step method
For the blocked step method, we consider two independent meshes MDR

and MDS
that we will

seek to recombine on interface Σθ, as shown in Figure 11.2 (a). To do this, it is possible to mesh
domain D = DR∪DS normally and virtually duplicate the Nθ unknowns located on Σθ = DR∩DS .

Finally, this method requires that the mesh should be réglé on Σθ. This means that there is a
periodic structure of the mesh on Σθ by angle rotation ∆θ as shown in Figure 11.3 on a sample
2D mesh.

Figure 11.3: Mesh layout with the blocked step method. The rotor unknowns (blue cross) are
virtually duplicated on Σθ

Intuitively, we understand that with this layout it will be possible to take account of the angle
rotations θk = k∆θ with k ∈ Z by permutation of unknowns along Σθ.

11.2.2 Finite element problem on DR et DS

Having virtually duplicated the unknowns on interface Σθ, the linear magnetostatic problem is
written indépendamment on DR and DS as:
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(
MR

rr 0
0 MS

rr

) (
XR

XS

)
=
(

FR

F S

)
(11.1)

where the index R or S denotes the quantities defined on the rotor and stator mesh respectively.
At this point, the problem is not properly set out, as the unknowns are virtually duplicated on
Σθ. Hence, the system of equations 11.1 is not invertible. However, the motion equation will lead
to a well-posed problem, while also taking the rotation into account.

11.2.3 Motion equation for DR et DS

This means finding the bijection linking XR
Σ ∈ RNθ to XS

Σ ∈ RNθ during motion, where these two
vectors represent the components of XR and XS respectively, whose corresponding unknowns
belong to Σθ. In the initial stage we can assume that:

XR
Σ = XS

Σ (11.2)

Because of the periodic structure, there is a permutation matrix R (θk) ∈ RNθ × Nθ that
represents the angle rotation θk by:

XR
Σ = R (θk) XS

Σ (11.3)

Matrix R (θk) is obtained directly from the unit permutation matrix P = R (∆θ) which allows
permutation of the indices of the unknowns after an angle rotation θ = ∆θ. We thus have:

R (θk) = Pk−1 (11.4)

where R (θk) verifies:

R (θ0) = R (θNθ
) = INθ

(11.5)

where INθ
∈ RNθ × Nθ is the identity matrix of size Nθ.

11.2.4 Notation of the total system with the blocked step method
We have yet to take advantage of motion equation 11.3 to properly set out problem 11.1. This
means éliminer the Nθ virtual unknowns on Σθ. To do this, we introduce rectangular matrix
T (θk):

T (θk) =


I 0 0
0 I 0
0 0 I
0 R (θk) 0

 (11.6)

The equation to eliminate the Nθ unknowns according to 11.3 is:

(
XR

XS

)
=


XR

D

XR
Σ

XS
D

XS
Σ

 = T (θk)

 XR
D

XR
Σ

XS
D

 (11.7)

where XR
D and XS

D represent the unknowns of the mesh at the rotor and stator respectively,
and which do not belong to Σθ. By replacing the expression of the unknown vector in the initial
system, we have:
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(
MR

rr 0
0 MS

rr

)
T (θk)

 XR
D

XR
Σ

XS
D

 =


FR

D

0
FS

D

0

 (11.8)

The unusual form of the second term is due to the fact that the field sources are not in contact
with Σθ. As the previous system has Nθ more equations than there are unknowns, it is then a
question of eliminating the equations by summing the contributions on Σθ. In practice, this is
simply done by multiplying system 11.8 by Tt (θk) [Antunes et al 2006]. Hence, the square of the
total system is written:

Tt (θk)
(

MR
rr 0

0 MS
rr

)
T (θk)

 XR
D

XR
Σ

XS
D

 = Tt (θk)


FR

D

0
FS

D

0

 (11.9)

By denoting X the new unknown vector, we can show that the previous system is reduced to:

(Mrr + Mpf (θk)) X = F (11.10)

Here Mrr is the invariant part by angle rotation θk. In practical terms, it represents the
interactions resulting from elements that do not touch Σθ. By contrast, Mpf (θk) is the matrix
that varies with each rotation. However, the latter has a low number of non-zero terms because
it is derived from the assembly of elements adjacent to Σθ. Finally, since the source vector is not
adjacent to Σθ, F = Tt (θk)

(
FR

D; 0; FS
D; 0

)
defined in 11.9 does not depend on θ.

11.2.5 Conclusion
In the case of the blocked step method, permutation of the nodal unknowns is applied at the
slipping surface. For the vector potential formulation, it is the circulation unknowns on the edges
that undergo permutation.

This change is made in the connectivity table. The periodicity or anti-periodicity conditions
are provided by the unknowns located at the ends of the slipping surface. To perform relative
motion, we correct only the connectivity in the moving elements that touch the slipping surface.

The advantage of this method is that it has a mesh that is always compliant. It is easy to
implement and the properties of the finite elements are preserved. As a result, taking account of
motion does not introduce a new numerical error. As a result, when making comparisons, this
method is often considered the benchmark for assessing the quality of the solution.

However, the main drawback is the constraint on the motion step, which must correspond to
the mesh step.

The blocked step method is implemented in code_Carmel (time-based version) and is used to
model rotating machines with the vector potential or scalar potential formulation.

11.3 Overlapping method
This method proposed by [Tsukerman 1992] was originally developed for 2D modelling with the
vector potential formulation. It was then further developed to be applied in 2D to electrical
machines [Biddlecombe et al 1988], [Lepaul et al 1999].
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To simplify presentation of the method, we use a 2D model of the cross-section of a machine.
The principle remains the same in 3D, and the explicit calculation of 3D shape functions can be
found in the annex D.

11.3.1 Mesh layout with the overlapping method
To apply the overlapping method, the meshes of the rotor MDR

and the stator MDS
must be

separated by a thin unmeshed layer Dθ as shown in Figure 11.2.
We denote ΣR

θ and ΣS
θ the respective interfaces of DR and DS along Dθ. In addition, we

assume that the meshes on ΣR
θ and ΣS

θ are made up of regular quadrangles with the same periodic
structure as θ. Thus, it can be assumed that the mesh of ΣS

θ in the initial state is obtained by
a normal projection of the mesh of DR. While the overlapping method can be applied to non-
regular meshes, this assumption simplifies the method and its cost in computation time, making
it compatible with the reduction of models.

11.3.2 Extension of nodal shape functions to Dθ

The principle of the method is first to extend the nodal functions of W0 (Dh) to the unmeshed
domain Dθ and to do so continuously. To this end, the support of the nodal functions of the
stator (associated with the unknowns belonging to ΣS

θ ) is extended by normal projection on ΣR
θ ,

as shown in Figure 11.4 (b) for a 2D example.

Figure 11.4: Overlapping interaction. (a): stator nodal function extended to ΓR
θ . (b): rotor nodal

function extended to ΓS
θ . (c): interaction between the two nodal functions.

Similarly, the support of the rotor nodal functions is extended to Dθ as shown in Figure 11.4
(b). Finally, Figure 11.4 (c) shows that there is an area where the two nodal functions overlap in
Dθ. This represents the interaction of one stator edge with two rotor edges. Figure 11.5 shows
that two integration zones can be defined: one gauche and the other droite.

11.3.3 Overlapping reference element
To calculate quantities on both zones, we introduce two reference elements presented in Figures
11.6 and 11.7. These are two quadrangles with “legs” whose length depends on the values a, b, c
and d defined in Figures 11.6 and 11.7.
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Figure 11.5: Left and right integration zones linked to the stator edge (red). The rings represent
mesh nodes, while the stars are fictional nodes, obtained by normal projection of real nodes on
the opposite edge. The latter are used only to define the integration zone and are not unknowns
in the problem.

Figure 11.6: Real element and reference element for the left integration zone

Figure 11.7: Real element and reference element for the right integration zone
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We can thus define a generic reference element that is shown in Figure 11.8. If a = c = 1, then
the right element can be found, while b = d = 1 describes the left element.

Figure 11.8: Generic reference element

The extension of this reference element to 3D, along with the shape functions, is presented in
annex D. In practice, it is a hexahedron with “surface legs” analogous to the linear legs for the
2D reference element.

11.3.4 Dealing with edge unknowns
For the unknowns, the reference element in Figure 11.8 shows that integration terms can be cal-
culated using the four real nodes, without introducing an additional unknown node. However, the
same does not apply to the edge unknowns, required for 3D applications. Indeed, on Figure D we
can see the two vertical edges e3 and e4. These connect DR to DS on Dθ. At first glance, therefore,
unknowns would have to associated with these edges. Hence, the principle of overlapping, which
is to avoid creating additional unknowns on Dθ, is no longer verified. Fortunately, use of the tree
gauge avoids contradiction of this principle. There is an infinite number of vectors A such that
B = rot A.

From a numerical point of view, this means that the problem is under-determined and hence a
number of unknowns can be eliminated. To this end, it is possible to eliminate the edges associated
with a tree spanning the mesh [Le Menach 1999], i.e. traversing all the mesh nodes and not closing
in on itself. There will thus be no unknowns associated with edges e3 and e4 linking DR to DS .
This ultimately allows modelling motion without adding an additional unknown.

11.3.5 Notation of the total system with the overlapping method
It is recalled that the approach is presented in 2D, but can be directly applied in 3D if the two
surface meshes of the rotor and the stator are composed of coincident regular quadrangles. Element
overlapping in 3D as well as the nodal and edge shape functions are presented in annex D.

To conclude, we can summarise the overlapping approach in two steps:

• Determination of the overlapping reference elements: for each rotor position, we must deter-
mine the two rotor edges that will interact with each edge of the stator, and the four values
a, b, c and d. In practice, if the mesh between the two interfaces ΣR

θ and ΣS
θ is periodic and

coincident, this task can be performed on only one edge of the stator (which interacts with
only two rotor edges). The periodic structure on ΣR

θ and ΣS
θ implies that the left and right

reference elements will be identical on Dθ.

• Assembly of finite element matrices on Dθ. As Dθ is in the air gap, consisting only of air, the
only terms to be calculated are those of the Rot-Rot matrix. Thus, we define the positive
semi-defined symmetric matrix Movl (θ) ∈ RNa×Na such that:
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(Movl (θ))i,j =
∫

Dθ

(
ν0 rot w1

i . rot w1
j

)
dDθ (11.11)

In practice, we calculate this expression by assembling the elementary matrices in each
overlapping element. According to the previous point, the left and right elements are identical
on θ. Thus, only one “left” and one “right” elementary matrix need to be calculated, which
we will assemble globally on Dθ in order to calculate Movl (θ).

In the case of a linear magnetostatic problem, the final system is written:[(
MR

rr 0
0 MS

rr

)
+ Movl (θ)

] (
XR

XS

)
=
(

FR

FS

)
(11.12)

where XR and XS are the unknowns on DR and DS respectively. Unlike the blocked step, the
total system is not projected onto the interface. It suffices to add matrix Movl (θ) to the original
system, allowing the two sub-domains to be coupled, thus modelling the motion of the rotor.

The Gauss integration technique adapted to the shape functions in the Overlapping method is
to be found in annex D.

11.4 Specific method for the spectral version
11.4.1 Principle of the blocked step
In general, methods that take account of motion can be seen as applications that link the unknowns
of the fixed domain to those of the moving domain. These applications are usually reflected in the
form of a transformation matrix M(t). To explain matrix M(t) of the blocked step, we take the
2D case where the spatial unknowns are on the vertices of the mesh (as shown in Figure 11.9).
The unknowns on the moving part are denoted imj and those on the fixed part ifj . At the initial

Domaine fixe Df -

Domaine mobile Dm -

(droite vers la gauche)

if1 if2 if3 if4 if5

im1 im2 im3 im4 im5

Figure 11.9: Example of a compliant mesh for the blocked step.

time t0, the unknowns on Df are related to those of Dm by:
if1
if2
if3
if4
if5

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

M(t0)


im1
im2
im3
im4
im5
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The stepwise motion of the moving part (one square of the grid) can be represented by matrix
M(t1) which links the moving unknowns to those of Df as follows:

if1
if2
if3
if4
if5

 =


0→ 1 0 0 0
0 0→ 1 0 0
0 0 0→ 1 0
0 0 0 0→ 1

→1 0 0 0 0


︸ ︷︷ ︸

M(t1)

=


im1
im2
im3
im4
im5



This is an operation to shift by one column in the diagonal. In the same way, at t = t2 we have:
if1
if2
if3
if4
if5

 =


0 0→ 1 0 0
0 0 0→ 1 0
0 0 0 0→ 1

→1 0 0 0 0
0 →1 0 0 0


︸ ︷︷ ︸

M(t2)

=


im1
im2
im3
im4
im5



This illustration shows that the move from position t0 to position tk is accomplished by permu-
tation, on line i of matrix M(t), the i−th value (which is 1) and the value 0 located at position
j = k − [k/n] ∗ n (k modulo n), where n is the size of matrix M(t).

11.4.2 Spectral representation of motion
Since the motion matrix is dependent on time t, it can be developed on the spectral basis C in the
following form:

M(t) =
∑

i

Miψi(t)

By orthonormal projection, we show that the spectral matrices Mi are given by:

Mi =
∫

T
M(t)ψi(t)w(t)dt

These integrals are estimated using the modified quadrature described in annex Q. For each
quadrature point tq there is a corresponding position q of the motion, for which matrix M(tq) is
calculated with a permutation equal to q∆h, where ∆h is the blocked step given by the mesh.
To deduce the tensor form of the system of equations in the presence of motion, we take the
discrete weak form 14.9. We introduce assembled matrices on the moving and fixed sub-domains
by writing:

Ri = Rf
i + M(t)Rm

i

System 14.9 is thus rewritten:



(∫
Tw

ψsψpdt
){

Rf
1 As + Rf

2 A
∂

s + Rf
3φs

}
+
(∫

Tw

ψsψpMdt
){

Rm
1 As+Rm

2 A
∂

s + Rm
3 φs

}
=(∫

Tw

ψsψpdt
){

L1Jf 0
s + L2Hf Γ

s

}
−
(∫

Tw

ψpK(A)dt
)

(∫
Tw

ψsψpdt
){

Rf
3 A∂

s + Rf
4φs

}
+
(∫

Tw

ψsψpMdt
){

Rm
3 A∂

s + Rm
4 φs

}
=(∫

Tw

ψsψpdt
){

L3Jf Γ
s

}
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Note that it has been assumed with this notation that the source terms, boundary conditions
and non-linearities do not exist in the motion strip (no matrix M(t) in the second term). This
assumption is by no means restrictive, but we have not found any applications where this is the
case.

By introducing matrices S and the differentiation matrix and its pseudo-inverse D̂ and defining
the matrix M̆ as a matrix of N t × N t blocks of size (Nmvt × Nmvt), where Nmvt is the number
of degrees of freedom on the motion interface. Block (s, p) of matrix M̆ is written:

M̆sp =
∑

q

Mq

∫
Tw

ψs(t)ψp(t)ψq(t)dt (11.13)

We obtain the system of equations describing the problem with motion, for all 1 ≤ s, p ≤ N t:



Ssp

{
Rf

1 As + Rf
2 A∂

s + Rf
3φs

}
+ M̆sp

{
Rm

1 As+Rm
2 A

∂

s + Rm
3 φs

}
= Ssp

{
L1Jf 0

s + L2Hf Γ
s

}
−
(∫

Tw

ψpK(A)dt
)

Ssp

{
Rf

3 A∂
s + Rf

4φs

}
+ M̆sp

{
Rm

3 A∂
s + Rm

4 φs

}
= Ssp

{
L3Jf Γ

s

}
and further:

S ⊗
{

Rf
1 A + Rf

2 A∂ + Rf
3φ
}

+ M̆ ◦
{

Rm
1 A+Rm

2 A∂ + Rm
3 φ
}

= S ⊗
{

L1Jf 0 + L2Hf Γ
}

−
(∫

Tw

ψpK(A)dt
)

S ⊗
{

Rf
3 A∂ + Rf

4φ
}

+ M̆ ◦
{

Rm
3 A∂ + Rm

4 φ
}

= S ⊗
{

L3Jf Γ
}

where ◦ is the Hadamard product for each block (see annex P). We substitute the differentiated
vector A∂ by (D ⊗ In1)A to write:

[
(S ⊗ Rf

1 )A + (S ⊗ Rf
2 )(D ⊗ In1 )A + (S ⊗ Rf

3 )φ
]
+[

(M̆ ◦ Rm
1 )A + (M̆ ◦ Rm

2 )(D ⊗ In1 )A + (M̆ ◦ Rm
3 )φ

]
= S ⊗

{
L1Jf 0 + L2Hf Γ

}
−(∫

Tw

ψpK(A)dt
)

(S ⊗ Rf
3 )A + (SD̂ ⊗ Rf

4 )φ + (M̆ ◦ Rm
3 )A + (M̆ ◦ Rm

4 )(D̂ ⊗ In1 )φ
}

=

SD̂ ⊗
{

L3Jf Γ
}

By simple calculation, we show:

(M̆ ◦ R)(D̂ ⊗ I) =
[
M̆(D̂ ⊗ I)

]
◦ R (11.14)

=
[ Nt∑

q=1
(EqD̂) ⊗ Mq

]
◦ R (11.15)

where Eq is the expected value matrix of size N t ×N t:

(Eq)ij =
∫

T
ψi(t)ψj(t)ψq(t)w(t)dt (11.16)
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From the point of view of mathematical formalism, we adopt the notation of (11.14) as it clearly
distinguishes the different dimensions of the problem (spatial, spectral and motion). However, at
this stage of general formalisation, we will keep in mind the notation of (11.15) as it can be used
to design special spectral bases (doubly orthogonal bases, analytical expressions).

Finally, the system of equations of the magnetodynamic problem with motion is given by
(recalling that S = I):

(I ⊗ Rf
1 )A + (D ⊗ Rf

2 )A + (I ⊗ Rf
3 )φ+

(M̆ ◦ Rm
1 )A + [M̆(D ⊗ I)] ◦ Rm

2 A + (M̆ ◦ Rm
3 )φ =

I ⊗
{

L1Jf 0 + L2Hf Γ
}

−
(∫

Tw

ψpK(A)dt
)

(I ⊗ Rf
3 )A + (D̂ ⊗ Rf

4 )φ + (M̆ ◦ Rm
3 )A + [M̆(D̂ ⊗ I)] ◦ Rm

4 φ
}

=

ID̂ ⊗
{

L3Jf Γ
}

(11.17)

Finally, we show that the linearised matrix of the system is written:

 I ⊗ Rf
1 + D ⊗ Rf

2 + M̆ ◦ Rm
1 + [M̆(D ⊗ I)] ◦ Rm

2 I ⊗ Rf
3 + M̆ ◦ Rm

3

I ⊗ Rf
3 + M̆ ◦ Rm

3 D̂ ⊗ Rf
4 + [M̆(D̂ ⊗ I)] ◦ Rm

4

 (11.18)

By using the definitions of (14.26), the complete system is thus written:

([
I ⊗ Gf

1 + D ⊗ Gf
2 + D̂ ⊗ Gf

3

]
+
[
M̆ ◦ Gm

1 + [M̆(D ⊗ I)] ◦ Gm
2 + [M̆(D̂ ⊗ I)] ◦ Gm

3

])
X

= B1 + B2 − ΨK̃
(11.19)

Remark 11.4.1 For the time being, we will only deal with motion using the blocked step method.
It should be noted that there are more advanced methods for dealing with non-compliant meshes.
For example, coupling between the finite element method and the spectral element methods. These
latter approaches require complex theoretical treatment that we will leave for another time.

11.5 Kinematic coupling
11.5.1 Formation of the equation of the physical problem
It is possible to associate the part in motion with a mechanical equation such as:

J
dΩ
dt

= Cem + Cr − f Ω (11.20)

where:

• Cem is the electromagnetic torque calculated by code_Carmel (S.I. units: N.m);

• Cr is the resistant torque imposed by the user (S.I. units: N.m);

• J is the inertia of the part in motion (S.I. units: N.m.s2);

• f is the friction coefficient (S.I. units: N.m.s);

• Ω = dθ (t)
dt

is the rotational speed (S.I. units: rad.s−1).
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11.5.2 Treatment
After calculation of the electromagnetic torque, time discretisation of the mechanical equation
using the backward Euler method allows calculation of the rotational speed at the given compu-
tational time step Ωt.

J
Ωt − Ωt−1

∆t = Cemt
+ Crt

− f Ωt (11.21)

The angular position of the rotating part is increased by the quantity ∆θ = ∆Ω∆t.

11.5.3 Weak coupling of the magnetic equation and mechanical equa-
tion

It thus remains to couple the magnetoquasistatic problem with the mechanical equation. Since
the mechanical time constant for typical electrotechnical applications is much greater than in the
magnetic problem, a strong coupling between the two problems is not necessary.

To go further, chaining of the two equations is even possible provided that the time discretisa-
tion constant is small enough to capture the dynamics of both models. Hence, the magnetic and
mechanical equations will be solved successively during the simulation.
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Chapter 12

Processing non-linearity

12.1 Fixed point

12.1.1 Description of the method
The fixed point method, also called Picard’s method [Miellou, Spiteri 1985], consists in transform-
ing the equation of the original system f (x) = 0 into an equivalent g (x) = x having he same
solution as described in Figure 12.1.

Figure 12.1: Fixed point method.

Thus, approaching zero for the initial function f is equivalent to approaching the fixed points
of the equivalent function g, which is motivated by the requirements of the fixed point theorem.
To better understand the mechanism of this method, we need to introduce some definitions.

Definition 12.1.1 Let f : I → R, a zero or root of f is any x ∈ I that satisfies f (x) = 0.

Definition 12.1.2 A fixed point of f is any x that satisfies f (x) = x.

163
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Theorem 12.1.1 Intermediate value theorem: Let f be a function, continuous on I = [a, b]. Thus
f reaches all values between f (a) and f (b), ∀d ∈ [f (a) , f (b)] there is c ∈ I such that f (c) = d.

Corollary 12.1.1 Let f : I = [a, b] → R be a continuous application such that f (a) f (b) < 0, i.e.
f (a) and f (b) are non-zero and of opposite sign. Hence, there is x ∈ ]a, b[ such that f (x) = 0.
If, in addition, f is strictly monotonic, then x is unique.

Corollary 12.1.2 fixed point theorem: Let g : [a, b] → [a, b] be continuous on [a, b]. Then g allows
a fixed point x in the interval [a, b].

Definition 12.1.3 A function g : [a, b] → R is said to be a contraction mapping if there is
0 < η < 1 such that for all x, y ∈ [a, b] we have |g (x) − g (y) | ≤ |x− y|.

Theorem 12.1.2 Let g : [a, b] → [a, b] be a contraction mapping. Then, the sequence xn defined
by x0 ∈ [a, b], xn+1 = g (xn) converges on the unique fixed point of g in [a, b].

12.1.2 Approximate method and solutions of the fixed point
There are three sources of error that lead to the use of the approximate method.

1. the mathematical model studied, represented in our case by function f , may depend on
parameters that are the result of experimental data, measurements made with finite precision
or approximate calculations.

2. rounding errors due to some types of arithmetic used by computers.

3. approximation and truncation errors: after a finite number of steps, limit processes are
stopped and transcendent functions are replaced by approximations.

Instead of looking at the conventional method xn+1 = g (xn) for the calculation of the fixed
point x of f , calculation of xn+1 is performed with an error ε > 0 such that:

d (xn+1, g (xn)) ≤ ε (12.1)

There is always a possibility that all three errors can occur simultaneously, which leads to the
use of the iterative method. More in-depth studies have been developed for non-linear problems
by [Chaitin-Chatelin et Frayssé 1996] and [Higham 2002] for linear algebra.

The method studied is based on algorithm 12.1.

Algorithm 12.1 Fixed point algorithm.
1: Input : x0 ∈ RN , ε > 0
2: while |xn+1 − xn| ≥ ε do
3: Calculation of xn+1 = g (xn)
4: Increment n = n+ 1
5: end while
6: Return xn+1

12.1.3 Study of convergence
To measure how quickly the sequence will converge towards the fixed point, we need to introduce
some tools. We define en = xn − x∗ as the approximation error, where x∗ is the minimum and xn

the estimate at iteration n. The rate of convergence is the rate at which error en falls towards 0.
The order of convergence of sequence en towards 0 is defined as the largest p > 0 such that there
is a finite limit α with:
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lim
n→∞

en+1

ep
n

≤ α (12.2)

A distinction is made between different cases:

1. Linear or geometric convergence of rate α if p = 1 and α < 1.

2. Superlinear convergence if p = 1 and α = 0.

3. Quadratic convergence if p = 2.

The behaviour of the method depends on x0, so how should this point be chosen to guarantee
convergence?

Definition 12.1.4 The basin of attraction of a fixed point x of g is the set of points x0 for which
the method converges towards x.

Ideally, the starting point is chosen in the basin of attraction. The fixed points are characterised
using the relation between the basin and the derivative of g.

1. If 0 < |g′ (x) | < 1, the fixed point is said to be attracting.

2. If |g′ (x) | > 1, the fixed point is said to be repelling.

3. If g′ (x) = 1 the fixed point is undetermined, nothing can be said.

The methods we will study next (Newton’s methods) all work on a common principle: reinter-
preting equation f (x) = 0 as a fixed point problem g (x) = x, for a certain function g. The choice
of function g leads to the existence of these different methods.

12.1.4 Advantages and disadvantages
The fixed point method is characterised by its robustness and ease of use, but it has a slow
convergence rate, since it is only linear and the convergence factor is generally low.

12.2 Newton-Raphson
This method was described by Isaac Newton (1643 - 1727) and appears in a very general context
in “De Analysi per æquationes numero terminorum infinitas” of 1669, in which Newton considers
polynomial equations and uses a linearisation technique. In 1687 he published a book entitled
“Philosophiæ Naturalis Principia Mathematica”, in which he describes the case of the Kepler
equation in the form x− e sin (x) = M , which is not polynomial. Since it is no longer possible to
linearise this method using algebraic techniques, Joseph Raphson (1648 - 1715) presented a new
method of solving polynomial equations in his book “Analysis æquationum universalis” in 1690.
Then came Simpson (1710 - 1761) who in his “Essays in mathematicks” introduced the method of
fluxions, i.e. derivatives, in 1740. The first proofs of convergence was developed by J. R. Mouraille
(1721 - 1808) in 1768, then J. Fourier and A. Cauchy for the case of functions of one variable.

L. Kantorovich (1912 - 1986) and A. Ostrowski (1893 - 1986), two of the greatest names in
numerical analysis, provided precise results on Newton’s method of convergence. Not to forget S.
Smale, the last of the great names associated with Newton’s method, who introduced the “alpha
theory”, which appeared very recently, in the 1980s and 1990s. For more information, the history
of Newton’s method is detailed in [Ypma 1995].
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12.2.1 Description of the method
This method consists in linearising the non-linear problem from the approximate values of the
solution and constructing a sequence that converges towards the solution [Dembo,Steihaug1983].
If the starting estimate is in the basin of convergence, the Newton-Raphson method generally
converges quickly to the solution sought, otherwise it diverges because of the unreliable direction
and length of the step [Kuczmann 2010].

Let f : Rn → R be a differentiable function on an interval I. For an equation f (x) = 0,
Newton’s method is based on study of the sequence:

dn = −f ′ (xn)−1
f (xn) , xn+1 = xn + dn, ∀x0 ∈ I (12.3)

Definition 12.2.1 Let f : Rn → R, a non-zero vector d of Rn is said to be a descent direction if
there is λ > 0 such that for any α ∈ ]0, λ[ we have f (x+ αd) < f (x).

Newton’s method corresponds to dn = −G (xn) . f ′ (xn). dn is a descent direction if the Hesse
matrix G (xn) is defined as positive.

The multidimensional Newton algorithm is given in algorithm 12.2.

Algorithm 12.2 Newton’s method.
1: Input : x0 ∈ RN , ε > 0
2: for n → n+ 1 do
3: while f (xn)

f ′ (xn) > ε do

4: Resolve dn = − [f ′ (xn)]−1
f (xn)

5: Update xn+1 = xn + dn

6: Calculation of the residual f (xn+1)
7: end while
8: end for
9: Return xn+1

Each iteration of this algorithm requires evaluation of the Jacobian matrix J =
[
∂f

∂xi

]
and the

resolution of a linear system involving the Jacobian matrix that may be incorrectly conditioned
[Kelley 2003].

12.2.2 Study of convergence
Theorem 12.2.1 Let f : Ω → E be an application of class C2, where E is a full normalised vector
space and Ω is an open set of E. If f (x) = 0 has a solution x∗ ∈ Ω then there is a neighbourhood
B of x∗ such that for any x0 ∈ B, the sequence xn generated by:

xn+1 = xn − f ′ (xn)−1
f (xn) , n = 0, 1, 2, ...

exists and converges towards x∗. In addition, there is a real number C > 1 such that for any
n ≤ 0:

|xn − x∗| ≤ C−2n

12.2.3 Magnetostatic example
All numerical examples presented in this chapter use the non-linear magnetostatic problem for
vector potential A. This involves solving:
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rot
(

1
µ

rotA
)

= J (12.4)

Figure 12.2 shows the domain under study for this 2D example inspired by a T.E.A.M. 13
workshop [Nakata et al 1995].

Figure 12.2: Mesh of the non-linear magnetostatic problem (TEAM13).

It consists of two U-shaped ferromagnetic cores arranged symmetrically on either side of a
third central plate which is surrounded by a DC coil, which makes four air gaps. Since the plates
have non-linear ferromagnetic properties, the point measured on the B - H curve in Figure 12.3 is
taken according to the Marrocco model.

Figure 12.3: Constitutive relation of the ferromagnetic material (TEAM13).

The characteristics of the different physical domains are:

• Air: magnetic permeability µ0 = 4π10−7H.m−1;
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• Iron: non-linear permeability µ (B);

• Coils: the magnetomotive forces of the excitation coil are 1,000 At and 3,000 At, sufficient
to saturate the plates.

Different levels of mesh fineness are adopted for this problem, as described in Table 12.1.

Mesh Mesh 1 Mesh 2 Mesh 3
Number of elements 7,122 28,488 113,952

Number of nodes 1,207 4,828 19,313

Table 12.1: Information on the meshes used.

Conventional Newton’s method is tested at different mesh fineness and different currents (500,
1,000, 2,000 and 3,000 At) with the conventional starting point A = 0.

The convergence results are summarised in Table 12.2.

Current Mesh 1 Mesh 2 Mesh 3
500 At 5 8 10

1,000 At 9 Diverges Diverges
2,000 At Diverges Diverges Diverges
3,000 At Diverges Diverges Diverges

Table 12.2: Convergence results for different meshes (TEAM13)

It can be seen that Newton’s method diverges as the size of the system increases and as strong
saturation appears.

12.2.4 Advantages and disadvantages

The major advantage of Newton’s method over a fixed point method is its 2nd-order convergence
rate. This convergence always remains local.

It should also be noted that if the method does not converge, for example if the initial estimate
x0 was not chosen in the basin of convergence, then the method may diverge very quickly.

The major disadvantage of Newton’s method is its cost: evaluation of the Jacobian matrix
is required at each iteration, and the resolution of linear systems f ′ (xn) (xn+1 − xn) = −f (xn)
involves the Jacobian matrix, which may be poorly conditioned.

Remark 12.2.1 It is recalled that to solve a linear system we do not calculate the inverse of
the matrix, but rather we factorise it, using LU factorisation for example, then we calculate the
solutions of the systems with triangular matrices.

12.3 Solving non linear time based problems

It is further recalled that the discretised generic problem is written:
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Find Xk (t) ∈ RN such that:(
K
τ

+ Mθ (θ) + M
(
Xk
))

Xk = C Uk + K
τ

Xk−1, k = 1, ..., N t (9.106)

and find
(
θk+1,Ωk+1) ∈ R2 such that:
Ωk+1 =

(
1 − τ fM

JM

)
Ωk + τ

JM

(
ΓB

(
Xk
)

+ ΓM

)
θk+1 = θk + τ Ωk+1

, k = 0, ..., Nt − 1 (9.107)

At time step tk, equation 9.106 defines a system of equations that is non-linear due to the
operator M

(
Xk
)
. A non-linear problem is difficult to solve directly with a numerical computer.

An approximation method such as the Banach fixed point or Newton-Raphson method may then
be used. These two iterative approaches consist in transforming the non-linear problem 9.106 with
solution Xk into a series of linear problems (Pj) with solution Xk

j Under certain conditions, these
approaches converge to give:

∥Xk − Xk
j ∥ −→

j→+∞
0 (12.5)

In practice, it is hoped that the number of non-linear iterations Nnl does not exceed fifty, so
that the computation time remains reasonable.

To evaluate the quality of approximation Xk
j , the residual vector R

(
Xk

j

)
is used. This is

actually an image of the error, which generally behaves in the same way but with different orders
of magnitude. It is simply obtained by re-injecting the approximation into the initial problem
9.106. Thus, the residual vector is written:

R
(
Xk

j

)
=
(

K
τ

+ Mθ

(
θk
)

+ M
(
Xk

j

))
Xk

j − C Uk − K
τ

Xk−1 (12.6)

In practice, the user chooses an error criterion ϵnl > 0 and considers that the algorithm has
converged when:

∥R
(
Xk

j

)
∥ < ϵnl (12.7)

In this case, we define:

Xk = Xk
j (12.8)

and then we move on to the next time step. We will thus detail the two linear problems 12.9
and 12.12 that must be solved with the fixed point and Newton methods respectively.

12.3.1 Numerical resolution by the fixed point method
The fixed point method consists in transforming the initial non-linear problem into a series of
linear problems 12.9 defined by:

Find Xk
j (t) ∈ RN such that:(

K
τ

+ Mθ

(
θk
)

+ M
(
Xk

j−1
))

Xk
j = C Uk + K

τ
Xk−1 (12.9)

The iterative algorithm for the fixed point method is presented below:
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Algorithm 12.3 Fixed point algorithm.
1: Data: An initial vector Xk

0 . Typically we take Xk−1 or the null vector.
2: Result: The solution vector Xk.
3: Initialisation of j = 1 and η = ϵ+ 1;
4: while j < Nmax

nl and η > ϵ do
5: Calculation of Xk

j , solution of 12.9;
6: Calculation of the error associated with Xk

j : ηk
j = ∥R

(
Xk

j

)
∥;

7: Increment: j := j + 1
8: end while
9: Saving the solution Xk = Xk

j

12.3.2 Numerical resolution by the Newton-Raphson method
Like the fixed-point method, the Newton-Raphson approach turns the initial non-linear problem
into a sequence of linear equations 12.12. These are obtained after a development limited to the
1st order of the functional associated with the residual. This is written as the non-linear iteration
j:

R
(
Xk

j

)
= R

(
Xk

j−1
)

+ ∂R
∂X

(
Xk

j−1
)
.
(
Xk

j − Xk
j−1
)

+ o
(
Xk

j − Xk
j−1
)

(12.10)

where o (a) is a term that is negligible compared with a when ∥a∥ tends towards 0:

o (a)
∥a∥

−→
a→0

0 (12.11)

Assuming that ∥∆X∥ = ∥Xk
j −Xk

j−1∥ is small enough, the term o
(
Xk

j − Xk
j−1
)

becomes negli-
gible compared with the other sides of the equation. This is referred to as a linear approximation
of the functional associated with the residual. Newton’s method then consists in assuming that
under these assumptions of linearity, R

(
Xk

j

)
is zero. We can thus define the non-linear Newton

problem at iteration j:

Find Xk
j ∈ RN such that:

Xk
j = Xk

j−1 −
[
J
(
Xk

j−1
)]−1 R

(
Xk

j−1
)

(12.12)

where the Jacobian associated with R (.), J (.) = ∂R
∂X (.) ∈ RN×N is a positive semi-defined

symmetric matrix. Its expression is detailed in annex E.2.
Of course, the calculated solution Xk

j will not usually yield a residual R
(
Xk

j

)
that is strictly

zero. Indeed, problem 12.12 was obtained by assuming that functional R was linear. Since this
assumption is only an approximation in the general case, the residual is not strictly zero and this
is why the approach is iterative. The algorithm for the Newton-Raphson method is presented
below.
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Algorithm 12.4 Newton-Raphson algorithm
1: Data: An initial vector Xk

0 . Typically we take Xk−1 or the null vector.
2: Result: The solution vector Xk.
3: Initialisation of j = 1 and η = ϵ+ 1;
4: while j < Nmax

nl and η > ϵ do
5: Calculation of Xk

j , solution of 12.12;
6: Calculation of the error associated with Xk

j : ηk
j = ∥R

(
Xk

j

)
∥;

7: Increment: j := j + 1
8: end while
9: Saving the solution Xk = Xk

j

12.3.3 Overall solution method
In the remainder of this presentation, we thus solve Newton or fixed-point methods associated
with the set of equations 9.106 - 9.107. Figure 12.4 shows the overall solution method of the
non-linear problem 9.106 chained with the mechanical equation 9.107.

Figure 12.4: Overall solution method

12.3.4 Magnetostatic matrix system
12.3.4.1 Fixed point method for the vector magnetic potential formulation

We recall the weak form of this formulation:

∀w1
i ∈ W1

Γb

∑
a∈A

aa

∫
D
ν rotw1

i rotw1
a dD =

∫
D

Js .w1
i dD +

∫
D

1
µ

rot w1
i .Br dD (9.32)

We introduce the vector of the unknowns:

X =


a1
a2
...

aNa

 (12.13)

We calculate the vector of the unknowns at iteration j by solving the equation 9.32 and calculate
the residual consisting of:
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∀w1
i ∈ W1

Γb

∑
a∈A

aj
a

∫
D
ν rotw1

i rotw1
a dD −

∫
D

Js .w1
i dD +

∫
D

1
µ

rot w1
i .Br dD = 0 (12.14)

The norm of this residual provides a test for the convergence criterion.

12.3.4.2 Newton’s method for the vector magnetic potential formulation

We recall the weak form of this formulation

∀w1
i ∈ W1

Γb

∑
a∈A

aa

∫
D
ν rotw1

i rotw1
a dD =

∫
D

Js .w1
i dD +

∫
D

1
µ

rot w1
i .Br dD (9.32)

We introduce the vector of the unknowns:

X =


a1
a2
...

aNa

 (12.15)

We can then apply the previous equation to the residual:

R
(
Xk

j

)
= R

(
Xk

j−1
)

+ ∂R
∂X

(
Xk

j−1
)
.
(
Xk

j − Xk
j−1
)

+ o
(
Xk

j − Xk
j−1
)

(12.10)

If equation 12.10 converges at iteration j then:

R
(
Xk

j

)
= 0

The equation then becomes:

−R
(
Xk

j−1
)

= ∂R
∂X

(
Xk

j−1
)
.
(
Xk

j − Xk
j−1
)

(12.16)

In the current functionality of code_Carmel, only the left side in equation 9.32 depends on A.
At iteration j we thus have:

∂R
∂X

∣∣∣
j−1

= ∂

∂A

{[∫
D
ν rotw1

i rotw1
a dD

]
[A]
}

j−1
(12.17)

Hence:

∂R
∂X

∣∣∣
j−1

=
∫

D
ν rotw1

i rotw1
a dD +

{[∫
D

∂

∂Aν rotw1
i rotw1

a dD
]

[A]
}

j−1
(12.18)

The second term of this equation can be written:

n1∑
l=1

∫
D

∂

∂Aa
ν rotw1

i rotw1
l dDAl (12.19)

In code_Carmel, ν depends only on B2. However:

B =
n1∑

m=1
rot w1

m Am

Consequently:
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∥B∥2 =
n1∑

p=1

n1∑
m=1

rot w1
p .rot w1

m Ap Am

This gives:

∂∥B∥2

∂Aa
= 2

n1∑
m=1

rot w1
a .rot w1

m Am

And further:

∂∥B∥2

∂Aj
= 2 rot w1

a .

n1∑
m=1

rot w1
m Am|j−1

This gives:

n1∑
l=1

∫
D

∂

∂Aa
ν rotw1

i rotw1
l dDAl =

n1∑
l=1

∫
D

∂ν

∂B2
∂B2

∂Aa
rotw1

i rotw1
l Al dD (12.20)

This expression changes to:

n1∑
l=1

∫
D

∂

∂Al
ν rotw1

i rotw1
l dDAl =

∫
D

∂ν

∂B2

n1∑
l=1

∂B2

∂Aa
rotw1

i rotw1
l Al dD (12.21)

Hence:

n1∑
l=1

∫
D

∂

∂Al
ν rotw1

i rotw1
l dDAl =

2
∫

D

∂ν

∂B2

n1∑
l=1

[{
rot w1

a .

n1∑
m=1

rot w1
m Am|j−1

} {
rotw1

i rotw1
l Al|j−1

}]
dD (12.22)

This gives the following expression:

n1∑
l=1

∫
D

∂

∂Al
ν rotw1

i rotw1
l dDAl =

2
∫

D

∂ν

∂B2

{
rot w1

a .

n1∑
m=1

rot w1
m Am|j−1

}{
rotw1

i .

n1∑
l=1

rotw1
l Al|j−1

}
dD (12.23)

Finally, we write:

∂R
∂X

∣∣∣
j−1

=
∫

D
ν rotw1

i rotw1
a dD+

2
∫

D

∂ν

∂B2

{
rot w1

a .

n1∑
m=1

rot w1
m Am|j−1

}{
rotw1

i .

n1∑
l=1

rotw1
l Al|j−1

}
dD (12.24)

The norm of this residual provides a test for the convergence criterion.
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12.3.4.3 Fixed point method for the scalar electric potential formulation

We recall the formulation obtained:

∀w0
i ∈ W0

Γh

∑
n∈Nh

Ωn

∫
D
µgradwi

0 .gradwn
0 dD =∫

D
µgradwi

0 .Hs dD −
∫

D
w0

i div BrdD (9.35)

We introduce the vector of the unknowns:

X =


Ω1
Ω2
...

ΩNn

 (12.25)

We calculate the vector of the unknowns at iteration j by solving the equation 9.35 and calculate
the residual consisting of:

∀w0
i ∈ W0

Γh

∑
n∈Nh

Ωn

∫
D
µgradwi

0 .gradwn
0 dD−∫

D
µgradwi

0 .Hs dD +
∫

D
w0

i div BrdD = 0 (12.26)

The norm of this residual provides a value for the convergence test.

12.3.4.4 Newton’s method for the scalar magnetic potential formulation

This method is not currently implemented in the time-based version of code_Carmel.

12.3.5 Magnetodynamic matrix system
12.3.5.1 Fixed point method for the vector magnetic potential formulation

The weak form of the time-discretised equations is recalled below:

∫
D

[
1
µ

rotw′1
a . rotA (ti+1) + σw′1

a .

(
A (ti+1)

∆t + gradφ (ti+1)
)]

dD =
∫

D
Js .w′1

a dD

+
∫

D

1
µ

Br . rot w′1
a dD +

∫
D
σw′1

a

A (ti)
∆t dD∫

D
σ gradw′0

n

(
A (ti+1)

∆t + gradφ (ti+1)
)
dD =

∫
D
σ gradw′0

n

A (ti)
∆t dD

(9.85)

We introduce the vector of the unknowns X a time ti+1:

X (ti+1) =



a1 (ti+1)
a2 (ti+1)

...
aNa

(ti+1)
φ1 (ti+1)
φ2 (ti+1)

...
φNn (ti+1)


(12.27)
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We calculate the vector of the unknowns at iteration j by solving the equation 9.85 and calculate
the residual consisting of:

∫
D

[
1
µ

rotw′1
a . rotA (ti+1) + σw′1

a .

(
A (ti+1)

∆t + gradφ (ti+1)
)]

dD −
∫

D
Js .w′1

a dD−∫
D

1
µ

Br . rot w′1
a dD −

∫
D
σw′1

a

A (ti)
∆t dD = 0∫

D
σ gradw′0

n

(
A (ti+1)

∆t + gradφ (ti+1)
)
dD −

∫
D
σ gradw′0

n

A (ti)
∆t dD = 0

(12.28)
The norm of this residual provides the value used to test the criterion to stop the iterative

process.

12.3.5.2 Newton’s method for the vector magnetic potential formulation

The weak form of the time-discretised equations is recalled below:

∫
D

[
1
µ

rotw′1
a . rotA (ti+1) + σw′1

a .

(
A (ti+1)

∆t + gradφ (ti+1)
)]

dD =
∫

D
Js .w′1

a dD

+
∫

D

1
µ

Br . rot w′1
a dD +

∫
D
σw′1

a

A (ti)
∆t dD∫

D
σ gradw′0

n

(
A (ti+1)

∆t + gradφ (ti+1)
)
dD =

∫
D
σ gradw′0

n

A (ti)
∆t dD

(9.85)

We introduce the vector of the unknowns X a time ti+1:

X (ti+1) =



a1 (ti+1)
a2 (ti+1)

...
aNa

(ti+1)
φ1 (ti+1)
φ2 (ti+1)

...
φNn

(ti+1)


(12.29)

As in magnetostatics, we can use the equation seen above on the residual:

R
(
Xk

j (ti+1)
)

= R
(
Xk

j−1 (ti+1)
)
+∂R
∂X

(
Xk

j−1 (ti+1)
)
.
(
Xk

j (ti+1) − Xk
j−1 (ti+1)

)
+o
(
Xk

j (ti+1) − Xk
j−1 (ti+1)

)
(12.30)

If the previous equation converges at non-linear iteration j then:

R
(
Xk

j (ti+1)
)

= 0

The equation then becomes:

−R
(
Xk

j−1 (ti+1)
)

= ∂R
∂X

(
Xk

j−1 (ti+1)
)
.
(
Xk

j (ti+1) − Xk
j−1 (ti+1)

)
(12.31)

In the current functionality of code_Carmel, as before in magnetostatics, only one term de-
pends on A (ti+1) . At iteration j we thus have:
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∂R
∂X

∣∣∣
j−1

= ∂

∂A

{[∫
D
ν rotw1

i rotw1
a dD

]
[A (ti+1)]

}
j−1

(12.32)

Hence:

∂R
∂X

∣∣∣
j−1

=
∫

D
ν rotw1

i rotw1
a dD +

{[∫
D

∂

∂Aν rotw1
i rotw1

a dD
]

[A (ti+1)]
}

j−1
(12.33)

Finally, we write:

∂R
∂X

∣∣∣
j−1

=
∫

D
ν rotw1

i rotw1
a dD+

2
∫

D

∂ν

∂B2

{
rot w1

a .

n1∑
m=1

rot w1
m Am|j−1 (ti+1)

}{
rotw1

i .

n1∑
l=1

rotw1
l Al|j−1 (ti+1)

}
dD (12.34)

12.4 Solving non linear problem in spectral version
Non-linear resolution only applies to the vector magnetic potential formulation in the multi-
harmonic version of code_Carmel. We recall the equations obtained:



∫
Tw

ψp

∫
D

Knl(rotA) · rotw1
f +

∑
s

[ ∫
Tw

ψsψp

][∑
i

Asi

∫
D
νpf rotw1

i · rotw1
f +

∑
i

A
∂

si

∫
Dc

σwi
1 · w1

f

+
∑

j

φsj

∫
Dc

σgradw0
j · w1

f

]
=
∑

s

[∫
Tw

ψsψp

][∑
l

J0
sl

∫
D

w2
l · w1

f +
∑

l

1
µ
Bsl

∫
D

w2
l · rot w1

f

+
∑

l

HΓ
sl

∫
ΓH

(w1
l × n) · w1

f

]
∑

s

[ ∫
Tw

ψsψp

][∑
i

A∂
si

∫
Dc

σw1
i · gradw0

g +
∑

j

φsj

∫
Dc

σgradw0
j · gradw0

g

]
=∑

s

[ ∫
Tw

ψsψp

][∑
l

JΓ
sl

∫
ΓH

(w2
l × n)w0

g

]
(9.67)

This system is solved by a fixed point method.
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Numbering the unknowns

13.1 General numbering principle
We recall the form of the generic matrix obtained above. In the preceding sections, we have
seen that the modelling of electrotechnical devices can generate a number of different problems,
depending on the formulation used and whether or not electrical or mechanical coupling is taken
into account. Using the approaches described above, all these models can be represented by the
following generic problem:

Find X (t) ∈ RN such that:

K dX (t)
dt

+ (Mθ (θ) + M (X)) X (t) = C U (t) , ∀t ∈ [0, T ] , (9.97)

and find θ (t) ∈ R such that:

JM
d2θ (t)
dt2

+ fM
dθ (t)
dt

= ΓB (X) + ΓM (t) (9.98)

with U (t) which represents the voltage and/or current control of the system. From these two
equations some terms will be simplified depending on the application studied. so, if the problem
has ni conductive domain, ni circuit coupling, we have K = 0.

13.2 Numbering for the time-based version of code_Carmel
13.2.1 Electrokinetics
13.2.1.1 Formulation φ

In the case of an imposed voltage, it is recalled that the weak formulation of the φ problem is
written as follows:

∀w0
i ∈ W0

Γb

∑
n∈Nh

φn

∫
Dc

σ gradw0
i .gradw0

n dDc = −
∫

Dc

σ gradw0
i .gradαV dDc (9.25)

Hence the vector of the unknowns is written:

Xϕ =


φ1
φ2
...

φNn

 (13.1)
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In the case of an imposed current, the system of equations in the integral formulation is:

∀w0
i ∈ W0

Γb

∑
n∈Nh

φn

∫
Dc

σ gradw0
i .gradw0

n dDc +
∫

Dc

σ gradw0
i .gradαV dDc = 0∑

n∈Nh
φn

∫
Dc

gradα . σgrad
(
w0

n + αV
)
dDc = I

(9.26)
The vector of the unknowns is thus written:

X =


φ1
φ2
...

φNn

V

 (13.2)

13.2.1.2 Formulation T

The integral form obtained above is recalled below:

∀w1
i ∈ W1

Γh

∑
a∈Ah

Ta

∫
D

1
σ

rotw1
i . rotw1

a dD = −
∑
a∈A

ha,s

∫
D

1
σ

rotw1
i . rotw1

a dD (9.28)

The vector of the unknowns is thus as follows:

XT =


T1
T2
...

TNa

 (13.3)

13.2.2 Magnetostatics
13.2.2.1 Formulation A

The integral form obtained above is recalled below:

∀w1
i ∈ W1

Γb

∑
a∈A

aa

∫
D

rotw1
i rotw1

a dD =
∫

D
Js .w1

i dD +
∫

D

1
µ

w1
i . rot Br dD (9.32)

The vector of the unknowns is thus as follows:

XA =


A1
A2
...

ANa

 (13.4)

13.2.2.2 Formulation Ω

The integral form obtained above is recalled below:

∀w0
i ∈ W0

Γh

∑
n∈Nh

Ωn

∫
D
µgradwi

0 .gradwn
0 dD =∫

D
µgradwi

0 .Hs dD −
∫

D
w0

i div BrdD (9.35)
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The vector of the unknowns is thus as follows:

XΩ =


Ω1
Ω2
...

ΩNn

 (13.5)

13.2.3 Magnetodynamics
13.2.3.1 Formulation A − ϕ

We consider a magnetodynamic problem in formulation A − ϕ with voltage coupling, imposed
magnetic potential differences and circuit coupling.

If the magnetic potential differences are imposed, magnetic fluxes are introduced as unknowns.
In the case of circuit coupling, the mesh currents are also unknowns.

Thus X is written:

X =



XA

Xϕ

iν1
...

iν|ν|

φ1
...

φNmag

im1
...

imNboucles



∈ RNa+Nn+|ν|+Nmag+Nboucles (13.6)

with:

N = Na +Nn + |ν| +Nmag +Nboucles

Remark 13.2.1 We start by numbering the unknowns of the edges, then the nodal unknowns and,
finally, the electrical or magnetic unknowns.

13.2.3.2 Formulation T − Ω

It is recalled that the integral weak form is written as follows:

∑
a∈Ah

ta

∫
D

1
σ

rotw1
a . rotw1

i dD

+
∑

a∈Ah

ta

∫
D

w1
i .

∂

∂t
µw1

a dD −
∑

n∈Nh

Ωn

∫
D

w1
i .

∂

∂t
µgradw0

n dD =

∑
l

Hsl

∫
D

1
σ

rot w1
l . rotw1

i dD +
∑

l

Hsl

∫
D

w1
i .

∂

∂t
µw1

l dD

+
∑

l

Brl

∫
D

w1
i .
(
w2

l × n
)
dD (9.48)
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∑
a∈Ah

ta

∫
D

gradw0
i . µw1

a dD −
∑

n∈Nh

Ωn

∫
D

gradw0
i . µgradw0

n dD =

∑
l

Hsl

∫
D

gradw0
i . µw1

l dD +
∑

l

Brl

∫
D

gradw0
i .
(
w2

l × n
)
dD (9.49)

In addition, we must provide for current unknowns if voltage coupling is operational. If mag-
netic fluxes are imposed, magnetic potential differences are introduced as unknowns.

The vector of the unknowns is thus as follows:

X =



t1
t2
...

tNA

Ω1
Ω2
...

ΩNn

iν1
...

iν|ν|

ε1
...

εNmag



(13.7)

13.2.4 Numbering for the spectral version of code_Carmel

13.3 Dealing with floating potentials
Nodes belonging to a group with a floating potential property all have the same unknown number.

13.4 Dealing with boundary conditions
An integer is assigned to an unknown (node or edge) to indicate that the unknown is conditioned,
i.e. it should not be treated as a real unknown but, for example, as part of a periodicity condition.

This integer is chosen as the largest possible integer: 231 = 2147483647. The mesh must
contain fewer than 2,147,483,647 (2 billion) nodes or elements, which is within the current limits.

A test is nevertheless performed by the software to ensure this constraint.

13.5 Dealing with periodicity conditions
Depending on the periodicity condition (periodic or anti-periodic), a sign is defined and the as-
sociated unknown number is assigned this sign. Two matching nodes have the same unknown
number in absolute value.
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Assembly

14.1 General assembly principle
The calculation of the overall matrices encountered in the formulations defined above, as well as the
second terms, is performed using a general assembly procedure, which calculates the elementary
matrices one element at a time and then inserts the coefficients of these matrices in the correct
place in the overall matrices.

14.2 Magnetodynamic overall matrix - Harmonic case

14.2.1 Vector magnetic potential formulation

We show that system 9.67 can be written as:

AX (t) = B (t) ; ∀t ∈ T (14.1)

This is a non-linear system of size N = n0 + 2n1. X contains the unknowns of the problem,
i.e. X (t) =

(
A (t) ,A∂ (t) ,φ (t)

)T =
(
A1 (t) ...An1 (t) , A∂

1 (t) ...A∂
n1

(t) , φ1 (t) ...φn0 (t)
)T .

To solve this system we use, among others, linearisation methods such as Newton- Raphson or
Picard’s fixed point method. By breaking down the non-linear magnetic constitutive relation as
follows:

H (x, t) = K (x, t) = νpf B (x, t) + Knl (B (x, t)) (14.2)

System 14.1 changes to:

Alin X (t) + Anlin (X (t)) = B (t) ; ∀t ∈ T (14.3)

with:

Alin =


R1 R2 R3

0 Rt
3 R4

 et Anlin =


K (A (t)) 0 0

0 0 0

 (14.4)

Matrix blocks Ri, time invariant, and K (A (t)) are given by:
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(R1)ij =
∫

D
νpf rotw1

i . rotw1
j dD, 1 ≤ i, j ≤ n1

(R2)ij =
∫

D
σw1

i .w1
j dD, 1 ≤ i, j ≤ n1

(R3)ij =
∫

D
σ gradw0

i .w1
j dD, 1 ≤ i ≤ n0 et 1 ≤ j ≤ n1

(R4)ij =
∫

D
σ gradw0

i .gradw0
j dD, 1 ≤ i, j ≤ n0

K (A) =
∫

D
K (A) . rotw1

f dD, 1 ≤ f ≤ n1

The second side B (t) of system 14.3 provides the volume sources and boundary conditions of
the system. In the absence of current density in the conducting media, it is written as a matrix
in the form:

B (t) =
( L1 J0 (t)

0

)
+
( L2 HΓ (t)

L3 JΓ (t)

)
(14.5)

with:

(L1)ij =
∫

D
w2

i .w1
j dD, 1 ≤ i ≤ n2 et 1 ≤ j ≤ n1

(L2)ij =
∫

Γ

(
w1

i × n
)
.w1

j dγ, 1 ≤ i, j ≤ n1

(L3)ij =
∫

Γ

(
w2

i × n
)

w0
j dγ, 1 ≤ i ≤ n2 et 1 ≤ j ≤ n1

(14.6)

and J0 (t) =
(
J0

1 (t) , ..., J0
n2

(t)
)T the vector of the development coefficients 7.43 of the imposed

current density. Vectors HΓ (t) and JΓ (t) respectively the development coefficients 7.46 and 7.45.

14.2.1.1 Spectral approach to the scalable non-linear problem

Then, we denote XA the vector of size n1 ×N t containing the ordered vectors Ai of mode i = 1
to i = N t (see expression 9.53). The same procedure is used to define vector Xφ of size n0 × N t.

XA =



 A11
...

A1n1

 A21
...

A2n1


...

... ANt1

...
ANtn1





Xφ =



 φ11
...

φ1n0

 φ21
...

φ2n0


...

... φNt1

...
φNtn0





(14.7)
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14.2.1.1.1 Resolution using the Galerkin projection
For a fixed p (1 ≤ p ≤ N t), the expression is contracted to:

∑
s

[∫
Tw

ψsψpdt
][

R1As + R2A
∂

s + R3φs

]
=
∑

s

[ ∫
Tw

ψsψpdt
][

L1J0
s + L3Bs + L2HΓ

s

]
−
∫

Tw

ψpK(A)dt

∑
s

[∫
Tw

ψsψpdt
][

Rt
3A∂

s + R4φs

]
=
[∫

Tw

ψsψpdt
][

L3JΓ
s

]
(14.8)

14.2.1.1.2 Tensor notation
We can show that the system to solve resulting from 14.8 is a square system of size NN t ×NN t,

where N is the number of spatial unknowns and N t is the number of spectral unknowns.
In practice, the matrix of this system is never explicitly constructed because it would require

significant memory resources. Given that in iterative solvers we perform matrix/vector products,
it suffices to have a structure allowing us to access the matrix/vector product without storage
of the entire matrix. The first solution is to incorporate the assembly operators into the matrix
product module. This solution is very effective in terms of memory cost but is clearly very slow
because in this case it will be necessary to construct elementary matrices for each iteration of
the iterative resolution algorithm. The second solution, preferred here, is the construction of a
tensor structure for which the memory cost is almost equal to that required by the harmonic finite
elements matrix. Before formulating the complete system of equations in its tensor form, taking
the example of the following term:

Nt∑
s=1

∫
Tm

ψs ψp

∑
i

Asi

∫
D
νpf rotw1

i . rotw2
f =

Nt∑
s=1

∫
T
ψs ψp R1 As ; ∀p : 1 ≤ p ≤ N t (14.9)

By developing 14.9, we obtain:
∫

T ψ1ψ1 R1 · · ·
∫

T ψ1ψNt RNt

... . . . ...∫
T ψNtψ1 R1 · · ·

∫
T ψNtψNt RNt


 A1

...
ANt

 (14.10)

By definition of the tensor product ⊗ (see annex O), we show:

Nt∑
s=1

∫
Tm

ψs ψp

∑
i

Asi

∫
D
νpf rotw1

i . rotw2
f = (S ⊗ R1) XA (14.11)

where R1 is the matrix introduced in section 14.2.1, XA is the vector of the unknowns of the
vector potential and S refers to the square, symmetrical matrix of size N t × N t defined by:

(S)ij =
∫

T
ψi ψj w (t) dt (14.12)

Remark 14.2.1 Note that if C is an orthonormal base then S is the identity matrix of size N t ×
N t.

Remark 14.2.2 Due to property 7 of the Kronecker product, given in the annex (see annex O), we
observe that the matrix/vector product in 14.12 is obtained without explicitly constructing S ⊗ R1
but in two steps: multiplication by S then by R1. The storage required for this operation is that
required by matrix S, which is generally quite small (because N t is in the order of a few tens), and
that required for storage of R1.
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It is recalled here that the coefficients of ∂tA (x, t) are directly related to those of A (x, t) by
equation 9.54. We will now give the tensor structure of each term of the system resulting from
the space and time discretisation.

Linearised matrix
The tensor form of the matrix of the system to be solved (its linear part) can easily be calculated

and is written: ( S ⊗ R1 + (S ⊗ R2) (D ⊗ I) S ⊗ R3

(S ⊗ Rt
3) (D ⊗ I) S ⊗ R4

)
(14.13)

This is a non-symmetric square matrix. To make it symmetric, we multiply the second line by
D̂ ⊗ I where D̂ is such that D̂D = I (D̂ depends, like D, on the spectral basis C chosen). This
gives:  S ⊗ R1 + (S ⊗ R2) (D ⊗ I) S ⊗ R3

(S ⊗ Rt
3) (D ⊗ I)

(
D̂ ⊗ I

)
(S ⊗ R4)

(
D̂ ⊗ I

)
 (14.14)

By exploiting property 3 of the Kronecker product, the tensor structure becomes: S ⊗ R1 + (S D ⊗ R2) S ⊗ R3(
S D D̂ ⊗ Rt

3

) (
S D̂ ⊗ R4

)
 (14.15)

As D D̂ = I, the structure of the linearised matrix is finally written: S ⊗ R1 + (S D ⊗ R2) S ⊗ R3

(S ⊗ Rt
3)

(
S D̂ ⊗ R4

)
 (14.16)

Remark 14.2.3 If matrix D is diagonal, then we show that the problem to be solved comes down
to the resolution of N t problems (of harmonic finite element size) entirely decoupled (with the
principle of overlapping for different frequencies. This is the case in CND, for example, where the
frequencies are not applied simultaneously). What base C will make D diagonal? base of ejkwt,
for k ̸= 0. (solutions of the differential equation y(t) = ∂t y(t)).

Second term resulting from the volume sources
The part of the second term here called volume sources is the part relating to the term of the

system 14.8 containing the contribution of (J0 0)t. We show that this term is written:

S ⊗

( L1 J0

0

)
(14.17)

Subsequently, this term will be referred to as B1.

Second term resulting from the boundary conditions

S ⊗

( L2 HΓ

L3 JΓ

)
(14.18)

By taking account of the symmetry operator, we write:



14.2. MAGNETODYNAMIC OVERALL MATRIX - HARMONIC CASE 185

 S ⊗ L2 HΓ

S D̂ ⊗ L3 JΓ

 (14.19)

We denote it B2.

Second term resulting from the non-linear part
We are interested in the term:∫

T

(
ψp

∫
D

Knl (rotA (t)) . rotw1
f

)
dt (14.20)

Due to the non-linearity, it is not possible to decouple the spatial and temporal dimensions
without introducing approximations1. Here we propose to evaluate the time integral in a numerical
way. We thus write the integral 14.20 as:

∀p ∈
{

1...N t
}

:
∫

T

(
ψp

∫
D

Knl (rotA (t)) . rotw1
f

)
w (x) dt =

nq∑
q=1

ψp (tq) K (tq)wq (14.21)

where K is the vector of size N and given in section 9.4.2 for time tq, nq is the chosen order
of quadrature, tq and wq are the points and weights of the quadrature respectively.

We now assume that we have the nq vectors K (tq) that we put into vector K̂ = (K (t1) , ...,K (tq))T .
We show that term 14.21 is written:∫

T

(
ψp

∫
D

Knl (rotA (t)) . rotw1
f

)
dt = ΨK̂ (14.22)

with Ψ the quadrature matrix defined by:

Ψ =


ψ1 (t1) w1 ψ1 (t2) w2 · · · ψ1 (tn) wn

ψ2 (t1) w1 ψ2 (t2) w2 · · · ψ2 (tn) wn

...
... . . . ...

ψP (t1) w1 ψP (t2) w2 · · · ψP (tn) wn

 (14.23)

General tensor form
The tensor structure of the spectral magnetodynamic system in the formulation A−φ presence

of non-linearities and volume sources is written (considering the spectral basis as orthonormal i.e.
S = I):

 I ⊗ R1 + D ⊗ R2 I ⊗ R3

I ⊗ RT
3 D̂ ⊗ R4

 ( XA

Xφ

)
=

 I ⊗
(
L1 J0 + L2HΓ)− ΨK̂

D ⊗
(
L3JΓ)

 (14.24)

where XA is the unknown vector corresponding to the vector potential and Xφ that corre-
sponding to the unknowns of the scalar potential. The first N t terms of XA correspond to the
spectral coefficients associated with the first spatial degree of freedom. The N t following are the
spectral coefficients on the second spatial degree of freedom, etc. We proceed in the same way for
Xφ. We define the following matrices:

1However, representing this term by separable functions, by techniques similar to those used for model reduction,
can be used to construct an approximation of the solution (choice of initial point for example).
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G1 =
( R1 R3

RT
3 0

)
, G2 =

( R2 0

0 0

)
, G3 =

( 0 0

0 R4

)
(14.25)

With this notation, system 14.24 is rewritten:

(
I ⊗ G1 + D ⊗ G2 + D̂ ⊗ G3

)
X = B1 + B2 + ΨK̂ (X) (14.26)

where Gi=1,2,3 are matrices of size N ×N associated with the spatial dimension, and I, D, D̂
are matrices of size N t × N t associated with the time dimension.

14.2.2 Scalar electric potential formulation

We recall the system of equations obtained:

∑
s

∫
T
ψs (t) ψp (t)

∑
i

Ts,i

∫
D

1
σ

rot w1
i (x) . rotw1

f dD

+
∑

s

∫
T
ψs (t) ψp (t)

∑
i

T ∂
s,i

∫
D
µw1

f .w1
i (x) dD

−
∑

s

∫
T
ψs (t) ψp (t)

∑
j

Ω∂
s,j

∫
D
µw1

f .gradw0
j (x) dD

−
∫

T

∫
∂D

(E × n) .T′ dγ =∑
s

∫
T
ψs (t) ψp (t)

∑
l

Hs∂
s,l

∫
D

1
σ

rotw1
l . rotw1

f dD

+
∑

s

∫
T
ψs (t) ψp (t)

∑
l

Hs∂
s,l

∫
D
µw1

f .w1
l dD

+
∑

s

∫
T
ψs (t) ψp (t)

∑
l

Br∂
s,l

∫
D

w1
f .w2

l dD (9.80)

∑
s

∫
T
ψs (t) ψp (t)

∑
i

T ∂
s,i

∫
D
µ gradw0

g .w1
i (x) dD

−
∑

s

∫
T
ψs (t) ψp (t)

∑
j

Ω∂
s,j

∫
D
µ gradw0

g .gradw0
j (x) dD −

∫
T

∫
∂D

(E × n) .gradΩ′ dγ =

∑
s

∫
T
ψs (t) ψp (t)

∑
l

Hs∂
s,l

∫
D

gradw0
g . µw1

l (x) dD

+
∑

s

∫
T
ψs (t) ψp (t)

∑
l

Br∂
s,l

∫
D

gradw0
g .
(
w2

l (x) × n
)
dD (9.81)

Matrix blocks Ui, time invariant, are given by:
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(U1)ij =
∫

D

1
σ

rotw1
i . rotw1

j dD, 1 ≤ i, j ≤ n1

(U2)ij =
∫

D
µw1

i .w1
j dD, 1 ≤ i, j ≤ n1

(U3)ij =
∫

D
µgradw0

i .w1
j dD, 1 ≤ i ≤ n0 et 1 ≤ j ≤ n1

(U4)ij =
∫

D
µgradw0

i .gradw0
j dD, 1 ≤ i, j ≤ n0

The second term C (t) of system 9.80 and 9.81 provides the volume sources and boundary
conditions of the system. In the absence of current density in the conducting media, it is written
with matrix blocks in the form:

(M1)ij =
∫

D
w2

i .w1
j dD, 1 ≤ i ≤ n2 et 1 ≤ j ≤ n1

(M2)ij =
∫

D
µgradw0

i .
(
w2

l × n
)
dD, 1 ≤ i ≤ n0, 1 ≤ j ≤ n2

(M3)ij =
∫

Γ
w1

i . (E × n) dγ, 1 ≤ i ≤ n1

(14.27)

For a fixed p (1 ≤ p ≤ N t), the expression is contracted to:

∑
s

[ ∫
Tw

ψsψpdt
][

U1Ts + U2T
∂

s + U3Ω
∂

s

]
=

∑
s

[ ∫
T
ψs (t) ψp (t)dt

][
U1 + U2

]
H

∂

s

+
∑

s

[ ∫
T
ψs (t) ψp (t)dt

][
M1Br

∂

s

]
(14.28)

∑
s

[ ∫
Tw

ψsψpdt
][

Ut
3T

∂

s

]
−
∑

s

[ ∫
Tw

ψsψpdt
][

U4Ω
∂

s

]
=
∑

s

[ ∫
T
ψs (t) ψp (t)dt

][
U3H

∂

s

]
+
∑

s

[ ∫
T
ψs (t) ψp (t)dt

][
M2Br

∂

s

]
(14.29)

As before, we introduce matrices defined by:

(S)ij =
∫

T
ψi ψj w (t) dt (14.12)

The tensor form of the matrix of the system to be solved can easily be calculated and is written:

( S ⊗ U1 + (S ⊗ U2) (D ⊗ I) (S ⊗ U3) (D ⊗ I)

(S ⊗ Ut
3) (D ⊗ I) (S ⊗ U4) (D ⊗ I)

)
(14.30)

14.3 Electrokinetic overall matrix
The electrokinetic formulation is only processed in the time-based version of code_Carmel.
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14.3.1 Formulation φ with imposed voltage

The weak form of this formulation was obtained above:

∀w0
i ∈ W0

Γb

∑
n∈Nh

φn

∫
Dc

σ gradw0
i .gradw0

n dDc = −
∫

Dc

σ gradw0
i .gradαV dDc (9.25)

This can be written in matrix form:

[SPhi] =
[∫

D
σ gradw0

i .gradw0
n dD

]
1 ≤ i ≤ n0
1 ≤ n ≤ n0

(14.31)

Remark 14.3.1 In the time-based version, σ can be a tensor.

And, having previously calculated function α:

[source4] = −
[∫

D
σ gradw0

i .gradαV dD
]

1 ≤ i ≤ n0

(14.32)

We obtain the synthetic expression:

 [SPhi]


 φ1

...
φn0

 =

 source4

 (14.33)

14.3.2 Formulation φ with imposed current

The electrokinetic formulation was obtained above in its integral form:

∀w0
i ∈ W0

Γb

∑
n∈Nh

φn

∫
Dc

σ gradw0
i .gradw0

n dDc +
∫

Dc

σ gradw0
i .gradαV dDc = 0∑

n∈Nh
φn

∫
Dc

gradα . σgrad
(
w0

n + αV
)
dDc = I

(9.26)
We obtain the synthetic expression:

0

[SPhi]
...
0

[SPhi] [SPhi]




φ1
...

φn0

V

 =


0
...
0
I

 (14.34)

14.3.3 Formulation T

We recall the weak form of the equation:

∀w1
i ∈ W1

Γh

∑
a∈Ah

Ta

∫
D

1
σ

rotw1
i . rotw1

a dD = −
∑
a∈A

ha,s

∫
D

1
σ

rotw1
i . rotw1

a dD (14.35)
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14.4 Magnetostatic overall matrix - Time-based case

14.4.1 Vector magnetic potential formulation
We recall the weak form of this formulation:

∀w1
i ∈ W1

Γb

∑
a∈A

aa

∫
D
ν rotw1

i rotw1
a dD =

∫
D

Js . w
1
i dD +

∫
D
νw1

i . rot Br dD (9.32)

14.4.1.1 Linear magnetostatic vector magnetic potential

We assume a linear relationship between magnetic field and flux density.

We introduce the matrix:

SALineaire =
[∫

D
ν rotw1

i rotw1
a dD

]
1 ≤ i ≤ n1
1 ≤ a ≤ n1

(14.36)

For the source terms, the following matrices are defined:

tCAiIs =
[∫

D
Js . w

1
j dD

]
1≤j≤n1

(14.37)

source2 =
[∫

D
ν rot w1

j .Br dD
]

1≤j≤n1

(14.38)

We introduce the vector of the unknowns:

X =


a1
a2
...

aNa

 (14.39)

This is written in synthetic form: SALineaire

 X

 =

 tCAi

 Is +

 source2

 (14.40)

14.4.1.2 Non-linear magnetostatic vector magnetic potential

We recall that the equation to be solved is:

−R
(
Xk

j−1
)

= ∂R
∂X

(
Xk

j−1
)
.
(
Xk

j − Xk
j−1
)

(12.16)

The index on the vector of the unknowns is the number of the iteration. The derivative matrix
of the residual R depends on the vector of the unknowns and is written:

∂R
∂X

∣∣∣
j−1

=
∫

D
ν rotw1

i rotw1
a dD +

{[∫
D

∂

∂Aν rotw1
i rotw1

a dD
]

[A]
}

j−1
(14.41)

The second term in the previous equation is written:
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n1∑
l=1

∫
D

∂

∂Al
ν rotw1

i rotw1
l dDAl =

2
∫

D

∂ν

∂B2

{
rot w1

a .

n1∑
m=1

rot w1
m Am|j−1

}{
rotw1

i .

n1∑
l=1

rotw1
l Al|j−1

}
dD (12.23)

This is written in matrix form by taking:

SALineaire (Xj−1) =
[∫

D
ν rotw1

i rotw1
a dD

]
1 ≤ i ≤ n1
1 ≤ a ≤ n1

(14.42)

Remark 14.4.1 The matrix term depends on X because ν depends on ∥B∥

We take:

rotRotX2D|a = rot w1
a .

n1∑
m=1

rot w1
m Am|j−1 (14.43)

The non-linear term linked to the reluctivity (or magnetic permeability) is written:

SANonLineaire (Xj−1) =
[∫

D
2.0 dν

dB2 rotRotX2D|a . rotRotX2D|i dD
]

1 ≤ i ≤ n1
1 ≤ a ≤ n1

(14.44)

The matrix system is thus written:

−

 SALineaire (Xj−1)


 Xj−1

+

 tCAi Is

+

 source2

 =

 SALineaire (Xj−1) + SANonLineaire (Xj−1)


 Xj − Xj−1

 (14.45)

For the source terms, we recall:

tCAiIs =
[∫

D
Js . w

1
j dD

]
1≤j≤n1

(14.46)

source2 =
[∫

D
νw1

j . rot Br dD
]

1≤j≤n1

(14.47)

14.4.2 Scalar magnetic potential formulation
We recall the weak form of this formulation:

∀w0
i ∈ W0

Γh

∑
n∈Nh

Ωn

∫
D
µgradwi

0 .gradwn
0 dD =∫
D
µgradwi

0 .Hs dD −
∫

D
w0

i div BrdD (14.48)
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14.5 Magnetostatic overall matrix - Harmonic case

14.5.1 Vector magnetic potential formulation
This case is drawn directly from 14.2.1.1.2.

14.5.2 Scalar magnetic potential formulation
This case is drawn directly from 14.2.2.

14.6 Magnetodynamic overall matrix - Time-based case

14.6.1 Vector magnetic potential formulation
The discretised form of the system of equations to be resolved is recalled below.

n1∑
a=1

aa(i+ 1)
[∫

D

1
µ

rotw′1
a . rotw1

a dD + 1
∆t

∫
D
σw′1

a .w1
a dD

]
+

n0∑
n=1

ϕn(i+ 1)
∫

D
σw′1

a gradw0
ndD =

∫
D

Js(i+1) .w′1
a dD +

∫
D

1
µ

Br .w′1
a dD+

n1∑
a=1

aa(i) 1
∆t

∫
D
σw′1

a .w1
a dD

(9.87)

n1∑
a=1

aa(i+ 1) 1
∆t

∫
D
σ gradw′0

n w1
a dD +

n0∑
n=1

ϕn(i+ 1)
∫

D
σ gradw′0

n gradw0
ndD =

+
n1∑

a=1
aa(i) 1

∆t

∫
D
σ gradw′0

n w1
a dD

(9.88)

This is written in matrix form by taking:

SALineaire =
[∫

D
ν rotw1

i rotw1
a dD

]
1 ≤ i ≤ n1
1 ≤ j ≤ n1

(14.49)

TA =
∫

D
σw′1

a .w1
a dD (14.50)

SPhi =
∫

D
σ gradw′0

n gradw0
ndD (14.51)

tCAPhi =
∫

D
σw′1

a gradw0
ndD (14.52)

For the source terms:

tCAiIs =
[∫

D
Js . w

1
j dD

]
1≤j≤n1

(14.53)

source2 =
[∫

D
νw1

j . rot Br dD
]

1≤j≤n1

(14.54)

In the case of a wound inductor supplied with voltage or current, we calculate:
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tCAi =
∫

D
w1

j NdD (14.55)

For an imposed current, we add the source term:

source1 = tCAiIinducteur (14.56)

For an imposed voltage, we add the source term:

source7 = −tCAiXj−1 (14.57)

where: Xj1 is the vector of the unknowns at the previous non-linear iteration.
For circuit coupling with Qucs, we calculate the matrix:

SN =
∫

D
w1

j NdDmatJi (14.58)

We also define:

source3 = [SALineaire] XA,j−1 (14.59)

where XA,j−1 is the vector of the unknowns of the edges at the previous non-linear iteration.
This is written in matrix form by taking:

SALineaire =
[∫

D
ν rotw1

i rotw1
a dD

]
1 ≤ i ≤ n1
1 ≤ a ≤ n1

(14.60)

The non-linear term linked to the reluctivity (or magnetic permeability) is written:

SANonLineaire =
[∫

D
2.0 dν

dB
rotw1

i rotw1
a dD

]
1 ≤ i ≤ n1
1 ≤ a ≤ n1

(14.61)

The first dynamic matrix is written:

SPhi =
[∫

D
σ gradw′0

n gradw0
n dD

]
(14.62)

The second dynamic matrix is written:

CAPhi =
[∫

D
σw′1

a gradw0
n dD

]
(14.63)

The third dynamic matrix is written:

TA =
[∫

D
σw′1

aw1
a dD

]
(14.64)

For the second term, we have:

CAi =
[∫

D
Js(i+1) .w′1

a dD
]

(14.65)

If there are inductors supplied with voltage, we add an unknown.

If there are magnets:

source2 =
∫

D

1
µ

Br .w′1
a dD (14.66)
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We introduce imposed voltage source terms on a solid conductor.

source4 =
[
dt

∫
D
σ gradw′0

n gradw0
n V dD

]
(14.67)

source5 =
[∫

D
σw′1

a gradw0
n V dD

]
(14.68)

For magnetic sources with an imposed flux, we add:

source8 =
[∫

D
2.0 dν

dB
rotw1

i rotw1
a K dD

]
1 ≤ i ≤ n1
1 ≤ j ≤ n2

(14.69)

source9 =
[∫

D
σw′1

aw1
a dD

]
(K − Kprec) /dt (14.70)

source10 =
[∫

D
σw′1

a gradw0
n dD

]
(K − Kprec) (14.71)

14.6.2 Scalar magnetic potential formulation

14.7 Processing overall values
14.7.1 Magnetodynamics
14.7.1.1 Imposing a voltage on a coiled conductor

∫
D

[
1
µ

rotw′1
a . rotA(i+1) + σw′1

a .

(A(i+1)

∆t + gradφ(i+1)

)]
dD =

∫
D

Js(i+1) .w′1
a dD

+
∫

D

1
µ

Br .w′1
a dD +

∫
D
σw′1

a

A(i)

∆t dD∫
D
σ gradw′0

n

(A(i+1)

∆t gradφ(i+1)

)
dD =

∫
D
σ gradw′0

n

A(i)

∆t dD

(9.85)∫
D

A(i+1)

∆t .N dD +R i = V +
∫

D

A(i)

∆t .N dD (14.72)

14.8 Coupling with an external circuit
14.8.1 Breakdown of the source current
We recall that when a device is powered by nI wound inductors, the total source current density
Js (X, t) is broken down in the form:

Js (X, t) =
nI∑

k=1
Nk (x) ik (t) (14.73)

where Nk (x) (m−2) is the coil density associated with inductor k, k = 1, ..., nI and ik (t) (A)
is the current flowing inside. Nk (x) can be defined by:

Nk (x) = ns
k

|Σk|
nk (x) (6.2)
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with |Σk| the surface generated by the inductor, ns
k its number of coils and nk the normal

unit vector at the cross-section of the coil. In discrete terms, we thus write the second term of
magnetoquasistatic problems as:

F (x, t) =
nI∑

k=1
Fk (x) ik (t) (14.74)

where we introduce the discretisation of the coil density vectors (Fk)i defined by:

(Fk)i =
∫

D

(
Nk .w1

i

)
dD (14.75)

14.8.2 Circuit equation
As seen above, we can impose either the current flowing in the wound inductors or the voltage at
their terminals. In the first case, the current is the premise of the problem. In the second, the
current flowing inside becomes an unknown in the problem. It is assumed that a voltage vk (t)
is imposed on the inductor terminals k in a circuit containing a voltage source vk (t) in series
with resistance Rk and inductance Lk. Rk represents the resistance of the winding and possibly
an external resistance, while Lk models for magnetic leaks associated with non-modelled winding
overhang and/or an external inductance. Finally, the current ik (t) in this circuit is a solution of:

∂ϕk (t)
∂t

+ Lk
∂ik (t)
∂t

+Rk ik (t) = vk (t) (14.76)

where ϕk is the magnetic flux captured by the coil k. This is the term that will be used to
couple the circuit equations with the magnetoquasistatic problem.

14.8.3 Expression for the magnetic flux
The flux generated by the inductor is expressed by definition as:

ϕk = ns
k

∫
Sk

(B . dSk) (14.77)

where Sk is the surface generated by the contour of the coil k.
Applying Stokes’ theorem and using B = rot A, we have:

ϕk = ns
k

∮
lk

(A . dlk) = ns
k

∮
lk

(A .Nk) dlk (14.78)

where lk is the closed contour bounding the surface Sk, again shown in Figure 6.1. Using the
definition of Nk (see equation 6.2), we finally find:

ϕk =
∫

vk

(A .Nk) dVk (14.79)

where: Vk =
∮

lk

|Σk| dlk is the inductor volume. In discrete terms, this relation is simply
written:

ϕk = Ft
k XA (14.80)

with Fk defined by expression 14.75.
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14.8.4 Strong coupling of the magnetic equation with circuit equations

To clearly present the coupling, we take the case of a linear magnetostatic problem. This is written:

Mrr XA (t) =
∑
k∈I

Fk ik (t) +
∑
k∈V

Fk ik (t), ∀t ∈ [0, T ] (14.81)

where the sets I and V contain the indices |I| and |V| of the inductors at the imposed voltage
and current respectively with nI = |I| + |V|. As explained above, the vertI| imposed currents
are a premise of the problem while the |V| others become unknowns. Thus, we define the new
unknown vector X containing the magnetic unknowns and the unknown currents by:

X (t) =


XA (t)
iV1 (t)

...
iV|V| (t)

 (14.82)

It then remains to couple the magnetic equation with the |V| circuit equations. Using the flux
expression, the coupled magnetostatic problem is written:

Find X (t) ∈ RNA+|V| such that:

K dX (t)
dt

+ M X = FI I (t) + FV V (t) , ∀t ∈ [0, T ] (14.83)

with:

M =



Mrr −FV1 · · · −FV|V|

0

...

0

RV1 0 0

0 . . . 0

0 0 RV|V|


(14.84)

K =



0 0

Ft
V1

...

Ft
V|V|

LV1

. . .

LV|V|


(14.85)
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FI =


FI1 · · · FI|I|

0


∈ R(NA+|V|)×|I|, I (t) =

 iI1 (t)
...

iI|I| (t)

 ∈ R|I| (14.86)

FV =



0

1 0 0

. . .

0 0 1


∈ R(NA+|V|)×|V| et V (t) =

 vV1 (t)
...

vV|V| (t)

 ∈ R|V| (14.87)

Finally, we choose to introduce the source vector U (t) ∈ R|V|+|I| in which we vertically
concatenated I (t) with U (t), as well as matrix C ∈ RN×|V|+|I| which contains matrices FV and
FI . We thus have:

C U (t) = FI I (t) + FV V (t) (14.88)

and finally, the problem is rewritten:

Find X (t) ∈ RNA+|V| such that:

K dX (t)
dt

+ M X = C U (t) , ∀t ∈ [0, T ] (14.89)

14.9 Dealing with domains that are not simply connected
If the conductive domain is not contractile and has a “hole” for example, we introduce a vector K
and, under these conditions, Jind becomes equal to:

Jind = rot (T + iK) (14.90)

with i a real coefficient associated with a current. Vector K is defined throughout the domain
and vector T always equals zero outside of Dc. The use of vector K is detailed in section 3.1.
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Chapter 15

Resolution of the linear system

15.1 Overview of linear systems

15.1.1 Calculation costs for field physics simulations
In numerical simulation of physical phenomena, a high computation cost (RAM, disk, CPU) of-
ten results from constructing and resolving linear systems. Simulation in electromagnetism is no
exception! The cost of building the system depends on the number of integration points and
the complexity of the constitutive relations, while the cost of resolution depends on the number
of unknowns, the models chosen and the topology. When the number of unknowns increases
dramatically, the second stage becomes predominant and will thus be our main focus here.

Remark 15.1.1 In addition, when it is possible to perform better in this resolution phase (in time
and in RAM consumption), through access to a parallel machine, this advantage can spread to the
actual system building phase (elementary calculations and assemblies) via the “distributed parallel”
mode. This is done by distributing the elementary calculations and associated matrix blocks on
the processors. For example, we can adopt the distribution, natural in finite elements, that each
processor is responsible for a group of elements. This is the principle behind the parallelism of
certain codes developed by EDF, e.g. Code_Aster and Telemac. In the future, it can also be applied
to code_Carmel.

Remark 15.1.2 In code_Carmel, even in linear, the cost of the construction phase of the system
is not negligible (in time and memory) compared with the actual resolution phase. This construc-
tion step is being redesigned to return to a more conventional cost hierarchy: switching to dynamic
allocation, optimising profile search, limiting the number of loops nested in the assembly routine,
etc.

These inversions of linear system are in fact ubiquitous in field calculation codes and often
buried deep in other numerical algorithms: non-linear method, time integration, modal analysis,
etc. Hence in code_Carmel, we most often seek to calculate the vector of unknowns u verifying a
real symmetrical linear system.1 of type:

K u = f (15.1)

with K a matrix and f a second member vector.

In general, solving this type of problem requires more thought than might appear:

• Do we have access to the matrix or do we simply know its action on a vector?
1In double precision if using the MUMPS direct solver or the PCG iterative solver. In single precision at the

preconditioning step of the PCG if using the MUMPS preconditioner.
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• Is this matrix sparse or dense?

• What are its numerical properties (symmetry, positivity, regularity, etc.) and structural
properties (real/complex, banded, in blocks, etc.)?

• Do we want to solve one system, several at the same time2 or consecutively3? Even several
different and successive systems whose matrices are very close4?

• In the case of successive resolutions, can previous results be reused to facilitate future reso-
lutions (see restart technique, partial factorisation)?

• What is the order of magnitude of the size of the problem size, the matrix, and its factorisa-
tion compared with the processing capabilities of processors and associated memory (RAM,
disk)?

• Do we want a very precise solution or just an estimate (see nested solvers)?

• Do we have access to linear algebra libraries (and their prerequisites MPI, BLAS, LAPACK,
etc.), do we have to use “in-house” products, or possibly a combination of both?

In code_Carmel, the matrix is explicitly constructed, we store it in CSR format5 and it is
completely managed in RAM (no dumping to disk). With most models, the matrix is sparse (finite
element discretisation), more or less well conditioned (because sometimes numerically singular
due to non-gauged modelling) and, for the moment, essentially symmetric real double precision.
In addition, it does not currently offer any particular structure (blocks, bands, etc.) on which
optimised processing could have been based.

Most of the resolutions are “one-shot”, i.e. we change the matrix and second member every
time. Except in non-linear, where to save time, the same tangent matrix can be kept within several
Newton iterations (following the values of the new parameter reacprecond_methodeNL see section
J.3.1). This places us firmly within the framework of a strategy of multiple second members. As
for the size of the problems, even if they increase year by year, they are modest compared with
CFD: at most, in the order of a few million unknowns.

In addition, from a functional view point, the code now potentially relies on6 certain libraries7

that are optimised and durable in time (BLAS, MUMPS and its dependencies) and can be used
on multi-core desktops and computer clusters. The aim is therefore to optimise the use of linear
and non-linear solvers in this way, while allowing for both “push-button” use (training, standard
studies, prototyping in electrical engineering) and “advanced” use (numerical expertise, difficult
or excessively large calculations).

Remark 15.1.3 The code_Carmel requirements in terms of linear solvers are complementary to
those of code_Aster: QA requirement, ease of prototyping, physics handled. Far from doing us
any harm, this enhances our product feedback and our external credibility in these areas.

2Same matrix but several independent second members; See construction of a Schur complement.
3Problems with multiple second members: same matrix but several successive and interdependent second mem-

bers; See Newton’s method without recalculating the tangent matrix.
4Problems with multiple second members: several matrices and several successive and interdependent seconds

members, but with matrices that are “spectrally” similar; See Newton’s method without recalculating the tangent
matrix.

5Compressed Sparse Row like in Code_Aster (also called MORSE format). TELEMAC and Code_Saturne
have sometimes chosen other strategies: memory-optimised matrix storage format and adapted for the matrix-
vector product, non-assembly of the overall matrix, non-use of a reference finite element, integration of the basic
terms by analytical means, etc.

6Following the values of the pre-compilation options USE_MUMPS and USE_BLAS (see section 6 [Boiteau
2014]).

7For a more detailed analysis of linear algebra libraries see paragraph
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Figure 15.1: Two classes of methods to resolve a linear system of type K u = f : direct and iterative

15.1.2 Two families of methods to resolve a linear system
For 60 years, two types of technique have been competing for supremacy in the field, direct linear
solvers and iterative linear solvers. The first are robust, ergonomic and universal and result in
a finite number of operations (theoretically) known beforehand. Their theory is relatively well
developed and their application to many types of matrices and software architectures is very
complete. In particular, their multi-level algorithmics is well suited to the memory hierarchies of
current machines. However, they require storage capacities that grow rapidly with the size of the
problem which limits the extensibility of their parallelism8 Even if this parallelism can be broken
down into several independent strata, thus increasing performance. On the other hand, iterative
methods are more “scalable” when increasing the number of processors9. They consume little
memory10 but their implementation is often “problem-dependent”. Their theory is full of many
“open problems”, especially in finite arithmetic. In practise, their convergence in a “reasonable”
number of iterations is not always achieved, it depends on the structure of the matrix, the starting
point, the stopping criterion, etc. In addition, they are not well suited to effectively solving
problems of the “multiple second members” type. Hence, unlike their direct counterparts, it is
not possible to offer THE iterative solver that will resolve any linear system. The algorithm type
is matched to a problem class on a case-by-case basis. They do, however, have other advantages
that have historically made them the preferred choice for certain applications. With equivalent
memory management, they require less memory than direct solvers, because we just need to know
the action of the matrix on any vector, without actually having to store it. On the other hand,
we are not subject to the “dictates” of the fill-in phenomenon that deteriorates the profile of the
matrices, we can effectively exploit the sparse character of the operators and control the accuracy
of the results11

In short, the use of direct solvers is more a technical matter, whereas choosing the right com-
bination of iterative method and preconditioner is more of an art! Despite its basic simplicity on
paper, solving a linear system, even a symmetric one, is not a “long quiet river”. You have to
choose between two evils, filling/pivoting or preconditioning!

15.1.3 Solutions offered by Code_Carmel
Nevertheless, iterative methods work rather well in code_Carmel. The code has a “house” con-
jugate gradient. It can be pre-conditioned (see section 15.2.2.3) by an ILU(0) single-level in-
complete Crout (parameter LinearSolverType=1, see section 15.2.3.2) or by a simple Jacobi

8This is also referred to as “scalability” or scaling up.
9This is the choice made by Code_Saturne, Syrthes, TELEMAC and the PCG strategies of Code_Carmel and

Code_Aster.
10apart from the needs of some preconditioners.
11This can be very interesting in the context of nested solvers (e.g. Newton + PCG), see V. Frayssé. The power

of backward error analysis. HDR of the Institut National Polytechnique de Toulouse (2000).
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(LinearSolverType=2, see section 15.2.3.1). However, its robustness is sometimes criticised and
there may be a need for another type of solver to corroborate its results.

This is why we introduced the MUMPS direct solver. This product can serve as:

• Benchmark linear solver : expensive but very rich numerically (LinearSolverType = 4, see
section 15.3.6).

• Expertise tool: analysis of singularity and matrix conditioning, numerical tools easily con-
trollable (see section 15.3.5.3).

• Flexible elementary building block (see section 15.4) to construct a preconditioner (LinearSolverType=3,
see section 15.2.3.3; In single precision and possibly by relaxing terms via mumps_relax) or
to optimise non-linear solver-linear solver coupling (pooling of the factorisation step via
reacprecond_methodeNL, see section J.3).

• Future parallelism vector in the code: centralised/distributed parallelism via MPI possibly
with threaded BLAS (see section 15.3.5.2).

Other codes such as Code_Aster are less lucky with their iterative solvers. The latter, because
of its mixed modelling, very dissimilar material characteristics and saddle point problems, often
requires more sophisticated and more costly preconditioners to ensure relatively robust operation
(non-relaxed single-precision MUMPS, adapted multi-grid method).

In TELEMAC, Syrthes and Code_Saturne, the organisation of the data flow and the external
algorithmics are “tuned” to take maximum advantage of PCG-type iterative solvers. Sometimes,
however, at the cost of constraints on data input, code developability/maintenance and restrictions
on the choice of analysis methods.12.

Remark 15.1.4 A third class of methods tries to take advantage of the respective advantages of
direct and iterative. Depending on the context, they are referred to as “hybrid methods” (HIPS,
MaPhyS, etc.) or “Domain Decomposition (DD) methods” (FETI, Neumann-Neumann, etc.).

Remark 15.1.5 The two main families of methods should be seen as complementary rather than
in competition. We often try to mix them together: DD methods, preconditioner by incomplete
factorisation or multi-grid type, iterative refinement procedure at the end of the direct solver, etc.

15.2 Conjugate gradient (CG) type iterative methods

15.2.1 Principle
15.2.1.1 Positioning of the problem

There is a host of iterative methods to resolve a linear system. But in practice, the most commonly
used are:

• Stationary methods: Richardson, Jacobi, Gauss-Seidel, SSOR, etc.

• Krylov methods: GC, GMRES, BiCGStab, Orthomin, etc.

Here we will detail the second family which is the one actually used in code_Carmel (LinearSolverType
= 1, 2 or 3). More specifically, the conjugate gradient (CG) algorithm. This algorithm devel-
oped by Hestenes and Steifel (1951) was ranked third in the “top 10” of the best numerical
algorithms of the twentieth century13.

12In order, for example, to limit MPI communications and conditioning damage to the matrix system
13B.A.Cipra. The Best of the 20th century: editors name top 10 algorithms. SIAM News, 33-4 (2000).
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In code_Carmel, the methods of the first family are used in addition to build a preconditioner
(Jacobi preconditioner with LinearSolverType=2). Just like “more or less complete” factorisa-
tions constructed by direct solvers (see ILU(0) preconditioner and MUMPS preconditioner with,
respectively, LinearSolverType=1 and 3).

When matrix K of the system to be resolved (see equation 15.1) has the “good taste” to be
symmetric positive definite (SPD in the English literature), it is shown, by differentiation, that
the initial problem:

(P1) K u = f (15.2)
can also be formalised as the minimisation of a quadratic functional of the form:

(P2) u = Argmin
v ∈RN

J (v) (15.3)

with: J (v) := 1
2 ⟨v,Kv⟩ − ⟨f ,v⟩ = 1

2 vT Kv − fT v

Figure 15.2: Example of J quadratic in N=2 dimensions

The figure above provides an example of J quadratic in N=2 dimensions with:

K :=
[

3 2
2 6

]
and:

K :=
[

2
−8

]
On the left is the graph of the functional, in the centre its level lines and, on the right, the

gradient vectors.
The operator’s spectrum is (λ1; v1) =

(
7; [1, 2]T

)
and (λ2; v2) =

(
2; [−2, 1]T

)
14

Due to the “positive definite” character of the matrix that makes J strictly convex, the can-
celling vector ∇J corresponds to the only overall minimum u. This is illustrated by the following
relationship, valid regardless of K symmetry:

J (v) = J (u) + 1
2 (v − u)T K (v − u) (15.4)

Thus, for any vector v different from the solution u, the positive definite character of the
operator makes the second term strictly positive and hence u is also an overall minimum.

This result, which is very important in practice, is based entirely on the famous positive-definite
property of the working matrix, which is a little “ethereal”. For a two-dimensional problem it is
possible to make a clear representation (see Figure 15.2): the paraboloid shape that focuses the
unique minimum at the point [2,−2]T of zero slope.

14Figures taken from J. R. Shewchuck’s paper, with his kind permission. An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain Carnegie Mellon University (1994).
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15.2.1.2 Steepest Descent

Hence the idea behind the classic method best known by its English name “Steepest Descent”: we
construct the sequence of iterates ui by following the direction in which J decreases the most, at
least locally, i.e.:

di = −∇J i = ri

with:

J i := J
(
ui
)

and:

ri := f − K ui

At the ith iteration, we will thus seek to construct ui+1 such that:

ui+1 := ui + αi di (15.5)
and:

J i+1 < J i (15.6)

Figure 15.3: Illustration of Steepest Descent on example n˚1: initial descent direction (a), inter-
section of surfaces (b), corresponding parabola (c), gradient vectors and their projection along the
initial descent direction (d) and overall process until convergence (e).

As a result of this formulation, we have thus transformed a quadratic minimisation problem of
size N (in J and u) into a one-dimensional minimisation (in G and α):

Find αi as αi = Argmin
α ∈[αm,αM ]

Gi (α)

avec Gi := J
(
ui + α ri

) (15.7)
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The figures above illustrate how this procedure works on example n˚1: starting from point
u0 = [−2,−2]T (see (a)) we seek the optimal descent parameter, α0, along the line of steepest
slope r0; this is equivalent to looking for a point belonging to the intersection of a vertical plane
and a paraboloid (b), signified by the parabola (c). Trivially, this point cancels out the derivative
of the parabola (d) :

∂G0 (α0)
∂α

= 0 ⇔ ⟨∇J
(
u1) ,d0⟩ = 0 ⇔ ⟨d1,d0⟩ = 0 ⇔ α0 := ∥d0∥2

⟨d0,K d0⟩
(15.8)

This orthogonality between two successive residuals (i.e. successive gradients) produces a
characteristic path, called a “zigzag”, towards the solution (e). Thus, in the case of a poorly
conditioned system producing narrow and elongated ellipses15, the number of iterations required
can be considerable (see Figure 15.3).

15.2.1.3 Principle of the conjugate gradient

To avoid this less-than-optimal zigzag path, a whole subset of descent methods known as “conju-
gate direction methods” has been developed. The CG algorithm belongs to this subset of methods.
These recommend the progressive construction of descent directions d0, d1, d2, etc., linearly in-
dependent so as to avoid the zigzags of the conventional descent method.

So what linear combination should be used to construct the new direction of descent at step
i? Knowing, of course, that it must take account of two crucial pieces of information: the value of
the gradient ∇J i = −ri and of the directions d0, d1, ... di−1.

? di = αi ri +
∑
j<i

βj dj (15.9)

The trick is to choose a vector independence of type K-orthogonality (as the working operator
is SPD, it does define a scalar product through which two vectors can be orthogonal, see Figure
3.1-4)

Figure 15.4: Example of vector pairs K-orthogonal in 2D: conditioning of any K (a), perfect
conditioning (i.e. equal to 1) = usual orthogonality (b).

We can therefore accept a linear combination of the type:
15The conditioning of the operator K is written as the ratio of its extreme eigenvalues η (K) = λmax

λmin
which are

themselves proportional to the axes of the ellipses. Hence the direct, visual link between poor matrix conditioning
and the narrow, tortuous valley where minimisation is mishandled.
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di := ri + βi di−1 (15.10)

We thus show that the one-dimensional search (see equation 15.7) takes place in an optimal
space: the plane formed by the two orthogonal directions

(
ri,di−1).

It thus remains to determine the optimal value of the proportionality coefficient βi. In CG,
this choice is made in such a way as to maximise the attenuation factor (ratio between the error
at iteration i− 1 and that at iteration i, expressed with the matrix norm associated with K):

∥u − ui∥2
K

∥ui−1 − u∥2
K

= ⟨ri,di⟩2

⟨K−1 ri⟩ ⟨K−1 di,di⟩
(15.11)

It leads to the expression:

βi := ∥ri∥2

∥ri−1∥2 (15.12)

and induces the same orthogonal property of successive residuals as for the Steepest Descent
(but without the zigzags!):

⟨ri, ri−1⟩ = 0 (15.13)

Adding a “residual-dd” condition:

⟨ri,di⟩ = ∥ri∥2 (15.14)

which requires initialising the process via:

d0 = r0

15.2.1.4 Conjugate gradient algorithm

In short, by recapitulating the previous relations, we arrive at the classic algorithm (3.1-1) below.

Initialisation u0 given, r0 = f − K u0 d0 = r0

Loop in i

(1) zi = K di

(2) αi = ∥ri∥2

⟨di,zi⟩ (optimal descent parameter)

(3) ui+1 = ui + αi di (new iterate)
(4) ri+1 = ri − αi zi (new residual)

(5) Stop test via ∥ri+1∥ (for example)

(6) βi+1 = ∥ri+1∥2

∥ri∥2 (optimal conjugate parameter)

(7) di+1 = ri+1 + βi+1 di (new direction of descent)

Table 15.1: Conjugate gradient (CG) algorithm.

In example n˚1, the “supremacy” of CG over Steepest Descent is clear (see Figure 15.5).
In both cases, the same starting points and stopping criteria were chosen: u0 = [−2,−2]T and
∥ri∥2 < ε = 10−6.



15.2. CONJUGATE GRADIENT (CG) TYPE ITERATIVE METHODS 207

Figure 15.5: Comparison of convergence, in example n˚1, for Steepest Descent, on the left, and
CG, on the right.

In practice, we often use this algorithm on systems that are not necessarily SPD and even
singular systems. This may be the case with code_Carmel. Convergence is then slowed down and
the robustness of the process is not guaranteed. It may diverge! But often, in code_Carmel (as
in Code_Carmel3D, TELEMAC, Syrthes, etc.), the algorithm behaves rather well even when it
is used “out of scope”. Especially when we make the effort to provide it with a well-conditioned
matrix (non-dimensional equation, no flattened meshes, etc.) and a second member that respects
the Fredholm alternative (f ∈ Im (K)).

Remark 15.2.1 This CG method was developed in 1951 by M. R. Hestenes (left) and E. Stiefel
(right) of the National Bureau of Standards in Washington D.C. (a breeding ground for numerical
analysts, also including C. Lanczos). See portraits opposite.

Remark 15.2.2 The first theoretical results on convergence are due to the work of S. Kaniel
(1966) and H. A. Van der Vorst (1986) and it was really popularised for solving large sparse
systems by J. K. Reid (1971). Interested readers will find an annotated history and an exhaustive
bibliography on the subject in the papers by G. H. Golub, H. A. Van der Vorst and Y. Saad.16.

Remark 15.2.3 Instead of a stopping test based on the norm of the residual, which is theoretically
permissible but in practice can be difficult to calibrate, we often prefer a non-dimensional stopping
criterion, such as the residual relative to the ith iteration:

δi := ∥ri∥
∥f∥

This is what is done in particular in Code_Carmel(3D), Code_Aster and TELEMAC.

15.2.2 Preconditioned conjugate gradient (PCG)
15.2.2.1 Principes

As we have seen (and hammered home!) in previous sections, the speed of convergence of the
conjugate gradient depends on the conditioning of the matrix η (K). The closer it is to its floor
value, 1, the better the convergence.

16Golub et al. Some history of the conjugate gradient and Lanczos algorithms: 1948–1976. SIAM review,
31-1 (1989). Closer to the solution: iterative linear solvers. The state of the art in numerical analysis. Ed.
Clarendon Press (1997). Y. Saad & H. A. Van Der Vorst. Iterative solution of linear systems in the 20th-century.
J.Comp.Appl.Math., 123 (2000).
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The principle of preconditioning is thus “posed”, it consists in replacing the linear system of
the problem (P1) (equation 15.1) by an equivalent system of the type:(

P̃1
)

M−1 K︸ ︷︷ ︸ u = M−1 f︸ ︷︷ ︸
K̃ f̃

(15.15)

such that, ideally:

• The conditioning is clearly improved17: η
(
K̃
)

≪ η (K).

• Just like the spectral distribution: more packed eigenvalues.

• M−1 is inexpensive to evaluate (as with the initial operator, we often just need to know the
action of the preconditioner on a vector): M v = u easy to invert.

• M−1 easy to implement and, possibly, efficient to parallelise.

• M−1 is fairly sparse because the aim is to limit the additional memory requirement.

• M−1 keeps the working matrix K̃ with the same properties as the original (here, the SPD
character).

In theory, the best choice would be M−1 = K−1 because then η
(
K̃ = IN

)
= 1, but if you

have to completely invert the operator by a direct method to construct this preconditioner, it is
of little practical interest!

However, we will see later that this idea is not as far-fetched as that (see ILU(0) and relaxed
single precision MUMPS preconditioners). Especially when we seek to optimise not just a “one-
shot” resolution, but a whole succession of resolutions within a non-linear process.

In other words, the purpose of a preconditioner is to compress, at a lower cost18, the spectrum
of the working operator. Thus, as already mentioned, its “effective conditioning” will be improved
in tandem with the convergence of the PCG.

Figure 15.6: Effect of diagonal preconditioning (Jacobi) on the paraboloid of example n˚1: left,
without η (K) = 3.5; on the right with η

(
K̃
)

= 2.8

Graphically, this means that the graph of the quadratic form is more spherical. Even on an
N=2 dimensional system and with a “defective” preconditioner (see Figure 15.6), the effects are
noticeable.

In absolute terms, we can precondition a linear system from the left (“left preconditioning”),
from the right (“right preconditioning”) or by a mixture of the two (“split preconditioning”). It
is the last version that will be adopted for our SPD operator, as we cannot directly apply the CG
to resolve

(
P̃1
)
: even if M−1 and K are SPD, this is not necessarily the case for their product.

17This theoretical property, just like the next, is very rarely demonstrated. They are often only supported by
numerical experiments.

18Memory, computation time, robustness, even maintenance/ergonomics.
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The trick then consists in using an SPD preconditioning matrix, M, for which we will be able to
define another matrix (M being real symmetric, it is diagonalisable in the form M = U D UT with
D := diag (λi), λi > 0 and U orthogonal matrix). The SPD matrix sought thus comes from the
associated decomposition M1/2 = U diag

(√
λi

)
UT with M1/2 defined such that

(
M1/2)2 = M.

Hence the new problem, this time SPD:(
P̂1

)
M−1/2 K M−1/2︸ ︷︷ ︸ M1/2 u︸ ︷︷ ︸ = M−1/2 f︸ ︷︷ ︸

K̂ û f̂
(15.16)

to which we can apply the standard CG algorithm to create what we call a Preconditioned
Conjugate Gradient (PCG).

15.2.2.2 PCG algorithm

By substituting in the algorithm 15.1, the expressions of the previous problem
(
P̂1

)
and by working

to simplify the whole to manipulate only expressions in K, u and f , the result is as follows:

Initialisation u0 given r0 = f − K u0, d0 = M−1 r0

Loop in i

(1) zi = K di

(2) αi = ⟨ri,gi⟩
⟨di, zi⟩

(optimal descent parameter)

(3) ui+1 = ui + αi di (new iterate)

(4) ri+1 = ri − αi zi (new residual)

(5) Stop test via ∥ri+1∥ (for example)

(6) gi+1 = M−1 ri+1 (preconditioned residual)

(7) βi+1 = ⟨ri+1,gi+1⟩
⟨ri,gi⟩

(optimal conjugate parameter)

(8) di+1 = gi+1 + βi+1 di (new direction of descent)

Table 15.2: Preconditioned conjugate gradient (PCG) algorithm.

But in fact, the symmetric character of the initial preconditioned problem
(
P̂1

)
is all relative.

It is inseparable from the underlying scalar product. If, instead of taking the usual Euclidean
scalar product, we use a matrix scalar product defined with respect to K, M, M−1, it is possible
to make the preconditioned problem symmetric even though it was not initially. As with Krylov
methods in modal, it is the (working operator, scalar product) pair that needs to be modulated
to adapt to the problem!

Thus, M−1 K being symmetric with respect to the M-scalar product, this new working oper-
ator and this new scalar product can be substituted in the non-preconditioned CG algorithm (see
algorithm 15.1):

K ⇐ M−1 K
⟨, ⟩ ⇐ ⟨, ⟩M

(15.17)

And (what a surprise!) by working with the expressions a little, we find exactly the previous
PCG algorithm (see algorithm 15.2). We do the same with a right preconditioning, K M−1, via a
M−1-scalar product. Hence, right, left or “split SPD style” preconditioning all lead rigorously to
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the same algorithm. This observation is used when the preconditioners do not conform to the ideal
scenario

(
P̂1

)
: this is exactly the case with the preconditioners in code_Carmel and Code_Aster.

Remark 15.2.4 This variant of PCG, which is by far the most widespread, is sometimes referred
to in the literature as the “untransformed preconditioned conjugate gradient”). As opposed to the
transformed version, which manipulates the entities specific to the new formulation.

15.2.2.3 PCG in code_Carmel

The PCG algorithm implemented in the code is very similar to the one described in 15.2.. We just
note that its stopping criterion is relative to the norm of the initial second member and that the
initial estimate is taken to be equal to zero19. (u0 = 0).

Its maximum number of iterations is configured using nbIterationMax and the stopping cri-
terion, now based on the norm of the residual (and no longer the squared norm), is controlled
via kEpsilonGCP. This last point is important because it is easier (and permitted!), in double
precision arithmetic, to control a parameter typically changing between 10−9 and 10−6 than its
squared value which thus changes between 10−18 and 10−12.

The recommended values for these parameters are 300 and 10−6, respectively. With some
thought required when it is considered that a large number of iterations are needed (>1000) or
the stopping criterion is extreme: >10−9 or <10−3. For more information, see section 7.2 of
[Boiteau 2014].

More recently, a software project has been launched to rationalise and pool sources and make
a number of minor improvements:

• Pre-testing algorithm control parameters

• Following up on the occurrence of an error or warning;

• Premature stop and exit with usol=0 (solution vector), if the Euclidean norm of the second
member is below the machine accuracy.

Remark 15.2.5 Code_Carmel now also provides an algorithm for non-preconditioned PCG (M =
Id , LinearSolverType = 0). It is only used to make comparisons and for validations (numerical
and computer-related).

Remark 15.2.6 In case of non-convergence, the PCG in Code_Carmel stops on the fatal error:
kErreurConvergenceGCP. Otherwise, the error code is kAucuneErreur. If the non-linear/linear
optimisation strategy is enabled (via reacprecond_methodeNL), the error code can also be set to
kErreurReacPrecond to alert the Newton algorithm of the need to recalculate the tangent matrix.

Remark 15.2.7 The change in the residual until convergence can be tracked on the screen, in a
convergence bar or in a file. These options are controlled by the parameters:

• kAfficheBarreConvergence;

• kSauveConvergence;

• descripteurFichierConvergence.
19This choice may seem a little counter-intuitive, especially when successively solving a Newton algorithm, but

in practice it is often the one that is favoured (see Code_Aster, TELEMAC). Starting from the origin does not
bias the search and provides, on average, the best compromise between time and robustness. The only case where
the initial iterate would be something other than the origin would be in the case of restart techniques (to control
a loss of orthogonality or to manage problems with multiple second members).
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15.2.3 Range of preconditioners available in code_Carmel
Among the myriad of possible preconditioners, only three possibilities have been retained in the
code:

• Jacobi (LinearSolverType = 2).

• Crout ILU(0) (LinearSolverType = 1).

• Single precision MUMPS (LinearSolverType = 3) and possibly relaxed20 (if the condition
mumps_relax > 0 is respected). This preconditioner can only be enabled if the code_Carmel
program has been linked with MUMPS (see makefile and variable USE_MUMPS).

These preconditioners are listed here in ascending order of memory consumption, robustness,
and complexity (numerical and IT). Often the efficiency in terms of number of iterations follows
the same hierarchy. For example, for Rubinacci’s cube (see Table 3.2-1), we have, whatever the
stop criterion, a number of iterations that ranges from a few hundred (for Jacobi) to a hundred
(for Crout) and then to only a few iterations (for MUMPS). However, a MUMPS iteration costs
much more in time and memory than a Crout iteration. So, there is a compromise to be found.

These preconditioners are based on the following strategy, which is in fact only verified on a
few canonical problems, but which often proves to “pay off”, even for industrial problems:

• As we move further away from the main diagonal, the orders of magnitude of the terms
decrease.

• Terms of small order of magnitude play little part in the calculation.

Based on these “axioms”, all “moves are thus allowed” to construct an approximation of K−1

at the lowest possible cost:

• With Jacobi: MJacobi = diag (K)21.

• With Crout: MCrout = L D LT not taking account of factorisation fill (profil (MCrout) =
profil (K) 22)

• With Mumps: MMUMPS = simple_précision
(
L D LT

)
previously filtering out extra-diagonal

terms that are too small. But here the profile of MMUMPS can be much larger than that of
K hence a bigger memory requirement (even in single precision).

code_Carmel thus offers a whole continuum of preconditioners for which the calculation cost
and memory cost can be adjusted according to the available resources and the difficulty of the
problem. Knowing that in case of non-convergence, the benchmark linear solver is always available:
MUMPS as a direct solver (see section 15.3).

In non-linear, we can also take great advantage of pooling, between several tens of iterations of
the non-linear solver (often a Newton algorithm), of the construction of the preconditioner. The
non-linear process may require more iterations, but in the end, as these are faster, the user often
wins!

This strategy is especially beneficial for the most costly combination: PCG + MUMPS pre-
conditioner. It is activated via the parameter reacprecond_methodeNL. With a strictly positive
value of this keyword (e.g. 30), the preconditioner is recalculated only if:

• The PCG has been through more than reacprecond_methodeNL iterations for a given iter-
ation of the non-linear solver.

20I.e. before factorising the matrix in single precision, we “sparsify” it, we make it sparse by removing extra-
diagonal terms that are too small.

21A matrix whose unique, possibly non-zero terms match the diagonal terms of K.
22The profile here is the set of non-zero terms in a sparse matrix.
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Type of preconditioner number of iterations
Without (LinearSolverType=0) 965
Jacobi (LinearSolverType=2) 360

Crout ILU(0) (LinearSolverType=1) 179
MUMPS SP very relaxed 6

(LinearSolverType=3 + mumps_relax = 10−3

... moderately relaxed 4
(... + mumps_relax = 10−4

... slightly relaxed 2
(... + mumps_relax = 10−5

... not relaxed 2
(... + mumps_relax < 0)

Table 15.3: Number of PCG iterations on the test case of Rubinacci’s cube with ε = 10−9

(Code_Carmel v1.7.6 on a 7-caliber station).

• That makes at least reacprecond_methodeNL iterations of the non-linear solver without this
re-calculation.

• The residual of the non-linear solver increases rather than decreases23.

Remark 15.2.8 The specialist literature offers many preconditioners: explicit (polynomial, SPAI,
AINV, etc.), implicit (Schwarz, IC, etc.), multi-Level (domain decomposition, multi-grid, etc.).
Some are dedicated to one application, others are more general. “Fashion” has also played a role!
Further information can be found, for example, in works by G. Meurant, Y. Saad, H. A. Van der
Vorst, J. W. Demmel, G. W. Stewart, etc.

Remark 15.2.9 For the moment, the preconditioner is being pooled while the tangent matrix
continues to be updated (for nothing). In the future, we will also be able to avoid the unnecessary
extra cost of elementary calculations and assemblies. This strategy will often pay off, even for
preconditioners with a very low cost (such as Crout or Jacobi). For the moment, the current
redesign of the tangent matrix construction routines and the lack of modularity of those present in
v1.7.3 have not enabled us to make any progress on this point.

15.2.3.1 Jacobi preconditioner

The first option is often offered in codes for its ease of implementation, its good ratio of “numerical
effectiveness to additional computation cost” for problems that are not too badly conditioned, and
its very good scalability (in parallel mode).

It consists in preconditioning the initial operator by the diagonal:

MJacobi := diag (K) (15.18)

This is called diagonal or Jacobi preconditioning (JCG for Jacobi Conjugate Gradient) by
reference to the stationary method of the same name. Since its memory overhead compared with
basic CG is negligible, in the order of O (N), it would be a mistake to forgo the acceleration it
offers. Even though the latter may be modest.

On the other hand, since in Code_Carmel, the resolved system is modified “in place” to take
this preconditioning into account, the additional computation cost of the preconditioning step
(step (6) of 15.2) is zero. We only “pay” for the initial and final transformation of the problem.

23This criterion could be made more stringent by replacing it with “the residual has not decreased by at least
x%” with x=20 or 30%
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Remark 15.2.10 This is a solution often chosen in CFD (for EDF R&D: Code_Saturne, TELEMAC).
In these fields, great attention is paid to the non-linear solution method and the construction of
the mesh so that they produce a well-conditioned problem. This is what has made JCG so famous,
transformed for the occasion into a veritable “speed demon” reserved for large parallel computers.

Remark 15.2.11 It is a solution that has not, however, been adopted in Code_Aster because of
its lack of robustness in thermo-mechanical industrial studies.

Remark 15.2.12 Until v1.7.6, the use of this preconditioner in Code_Carmel had a bug. At the
output of the conjugate gradient we did not correctly reconvert the work problem so that the matrix
and the second member no longer contained any trace of the preconditioning (inverse conversion
of equation 15.16). This could potentially produce false results if these elements were used for
post-processing. In contrast, the running of a Newton or the ODE solver was not affected, as these
reinitialise the linear system for each of their iterations. This bug was fixed as part of this software
project.

15.2.3.2 Crout preconditioner

The second option is preconditioning by an incomplete Cholesky factorisation IC(0) (also known
as a Cholesky-Crout factorisation). Since the initial operator is assumed to be SPD, it allows a
Cholesky decomposition of type K = C CT where C is a lower triangular matrix. An incomplete
Cholesky factorisation is the search for a lower triangular matrix F as sparse as possible and such
that F FT is close to K in a direction to be defined. For example, by taking B = K − F FT , we
will ask that the relative error (expressed in a matrix norm of choice):

∆ := ∥B∥
∥K∥

(15.19)

is as small as possible. On reading this “rather evasive” definition, the profusion of possible
scenarios can be seen. Everyone came up with their own incomplete factorisation! The work of
G. Meurant24, among others, shows the great diversity: IC(n), MIC(n), relaxed, reordered, by
blocks, etc.

So, this option consists in taking as a preconditioner:

MCrout := (F) (F)T (15.20)

Figure 15.7: Fill-in phenomenon during factorisation.

However, to simplify the task, we often impose a priori the sparse structure of F, i.e. its graph
(the triangular part of what was previously called the profile):

24G. Meurant. Computer solution of large linear systems. Ed. Elsevier (1999).
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Ξ (F) := {(i, j) , 1 ≤ j ≤ i− 1, 1 ≤ i ≤ N Fij ̸= 0} (15.21)
It is obviously a question of finding a compromise: the further this graph is extended, the

smaller the error (see equation 15.19), but the more costly the calculation and storage of what is
(in our case) only a preconditioner. Usually, the preconditioners are recursive and at their basic
level, they impose on F the same structure as that of K: Ξ (F) = Ξ (K).

Because Code_Carmel systems are not usually SPD but only symmetric, this concept is gen-
eralised to LU factorisation. This is called the ILU preconditioner for “Incomplete LU”.

The factorisation is constructed line by line using the usual formula:

Lij = 1
Dj

(
Kij −

j−1∑
k=1

Lik Dk Ljk

)
(15.22)

Hence the phenomenon of progressive fill-in of the profile: initially matrix L has the same fill-in
as matrix K, but in the course of the process, a zero term in Kij may correspond to a non-zero
term in Lij . It suffices that there is a column k (< j) with a non-zero term for rows i and j (see
Figure 15.7).

These non-zero terms may themselves correspond to previous fill-in, giving rise to a concept
of recursivity that can be interpreted as so many “levels” of fill-in. We thus talk of a level 0
incomplete factorisation (stored in L(0)) if it identically reproduces the structure (but not of
course the values, which are different) of the strict lower diagonal part of K (i.e. the same graph).
Level 1 factorisation (respectively L(1) may include the fill-in from non-zero terms of K, level 2
(respectively L(2) may mix in new previous non-zero terms to form possible new terms, and so on
recursively.

In Code_Carmel, we have limited ourselves to level 0. In Code_Aster, problems usually being
much less well conditioned, the user is allowed several levels of fill-in25.

Remark 15.2.13 Since the matrix is no longer SPD but simply regular symmetric, it is not
certain, a priori, that a factorisation L D LT exists without the use of permutations of rows and
columns (P K = L D LT with P permutation matrix). A management scenario for these pivots
has been planned in Code_Carmel (parameters kPivotsCrout and kEpsilonPivotsCrout). But
this scenario can sometimes go wrong. In this case, the code stops on a fatal error:
kErreurPreconditionneur.

Remark 15.2.14 Strictly speaking, we should talk of ILDLT-type incomplete factorisation, but
in the literature and in code documentation, ILU and IC, and even their variants, are already
often mixed up, so there’s no need to add to the list of acronyms! This documentation will refer
indifferently to Crout, IC(0) or ILU(0) factorisation.

15.2.3.3 MUMPS preconditioner

When linking Code_Carmel to the external product MUMPS (see paragraph 15.3.5.2), it can
be used as a direct solver (double precision) or as a preconditioner (single precision). With
this scenario, we benefit from a more robust solution than the previous two preconditioners but
potentially at a greater cost (in CPU and especially in peak memory requirement).

Even if the user can relax the extra-diagonal matrix terms provided to “MUMPS precondi-
tioner” by adjusting the parameter mumps_relax (see formula 15.23 and Figure )

If mumps_relax > 0 and i ̸= j, |Kij | < mumps_relax (|Kii| + |Kjj |) ⇒ K̃ij = 0
Else if K̃ij = Kij

(15.23)

25Empirically, we find that the CPU and memory costs double, at least, between each level. In general, the fill-in
factor ranges from 10 to 100. This leaves some room for manoeuvre on this parameter. To really take advantage
of this preconditioner we limit ourselves to a maximum of 3 levels. Otherwise, you might as well use the MUMPS
preconditioner!
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We thus construct, from K, the working matrix K̃ that will serve as input data for the single
precision MUMPS factorisation. So, this option consists in taking as a preconditioner:

MMUMPS := simple_precision
(
L̃ D̃ L̃T

)
(15.24)

It extends the previous concept of incomplete factorisation of the preconditioner. The fact
that most of the terms of the factorisation are preserved and that the tool handles a whole series
of numerical difficulties (pivoting, singularities, heterogeneity of the orders of magnitude of the
terms, etc. see section 15.3.5.3) gives it great robustness even on difficult problems.

It is for these reasons that this preconditioner has met with great success in Code_Aster.
thermo-mechanical simulations. It is “armed” to handle the diversity of situations and a wide
range of numerical difficulties.

Figure 15.8: Advanced features using MUMPS as a preconditioner: mixing of single/double pre-
cision calculations and matrix filtering.

This strategy therefore provides an industrial solution that is viable, at least twice less intensive
in CPU and peak RAM use than the direct solver strategy. And it takes advantage of all the
numerical improvements and acceleration of its “direct big brother”:

• To reduce peak RAM use, in addition to lowering mumps_relax, much of the memory
can be dumped to disk (mumps_memory = ’OOC’), change of re-numberer to reduce fill-in
(mumps_renum) or, eventually, increase the number of processors (distributed parallelism via
MPI). Even if the recommended values of these parameters, to optimise both time and peak
memory, are instead, respectively, 10-6, “IC” and “AUTO”.

• To reduce computation time, we should try to keep all MUMPS objects in RAM26 (mumps_memory
= ‘IC’) and definitely unplug all quality controls27. (mumps_post = ’OFF’ et kEpsilonMUMPS
< 0).

26However, if there is not enough memory per processor, it is better to take advantage of the optimised manage-
ment of MUMPS Out-Of-Core rather than leave the system to “swap”. This type of highly unfavourable behaviour is
immediately obvious from a very large gap between CPU time and elapsed time (shown via Imonitoring_systeme).
If system monitoring is enabled, a warning is usually issued to alert the user on this point. In order to avoid
these losses of time, it is best to pre-estimate the memory consumption of each of the alternatives (via the option
LinearSolverType = 5) and thus relaunch the calculation with full knowledge of the facts.

27Part of the quality of the solution (reverse error) is ensured by the PCG stop criterion. And in any case, we
chose from the outset to water down the resolution (simple precision and relaxation), hence there is no need to be
very precise about this deliberately approximate working problem!
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15.3 Direct methods

15.3.1 Principle
15.3.1.1 Factorisation

The basic idea of direct methods is to decompose the problem matrix K into a product of special
matrices (lower and upper triangular, diagonal) that are easier to “invert”. This is called the
factorisation28 of the working matrix:

• If K is SPD, it permits the unique Cholesky factorisation: K = L LT with L lower triangular.

• If K is arbitrarily symmetric and regular, it permits at least one “factorisation L D LT ”:
P K = L D LT with L lower triangular with diagonal coefficients equal to 1, D a diagonal
matrix and P a permutation matrix.

• If K is arbitrary and regular, it allows at least one “factorisation L U”: P K = L U with L
lower triangular with diagonal of 1, U upper triangular P a permutation matrix.

down

up

Figure 15.9: Principle of direct methods.

Remark 15.3.1 For example, the symmetric and regular matrix K below decomposes into the
following form L D LT (without the need for permutation here, P = Id)

K :=

 10 sym
20 45
30 80 171

 =

 1 0 0
2 1 0
3 4 1


︸ ︷︷ ︸

 10 0 0
0 5 0
0 0 1


︸ ︷︷ ︸

 1 2 3
0 1 4
0 0 1


︸ ︷︷ ︸

L D LT

(15.25)

15.3.1.2 Down- up

Once this decomposition is complete, the resolution of the problem is greatly facilitated. It can
now only be expressed in the form of the simplest linear resolutions there are: based on triangular
or diagonal matrices. These are the famous “forward/backward algorithms”. For example, in the
case of a factorisation L U the system 15.1 will be resolved by:

K u = f
P K = L U

〉
⇒ L v = P f (down)

U u = v (up) (15.26)

In the first lower diagonal (forward) system, we determine the intermediate solution vector v.
The latter then serves as the second member of the upper diagonal system (backward) for which
the vector u we are interested in is a solution.

28By analogy with the polynomial factorisations of the small classes...
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This phase is low in cost (for dense, N2 compared with N3 for factorisation29 with N the
size of the problem) and can thus be repeated many times with the same factorisation. This
is very useful when resolving a multiple second members problem or when we want to perform
simultaneous resolutions.

In the first scenario, the matrix K is fixed and we successively change the second member fi to
calculate as many solutions ui (the resolutions are interdependent). This allows for pooling and
thus amortising this initial cost of factorisation. This policy, widely used in Code_Aster, could
also benefit non-linear algorithms in code_Carmel.

In the second scenario, all the fi are known at the same time and the forward/backward phases
are organised in blocks to simultaneously calculate the independent ui solutions . This allows more
efficient high-level linear algebra routines to be used, and even to play on memory consumption
by storing vectors fi and ui as sparse.

Remark 15.3.2 The MUMPS product provides for these two types of strategy and even offers
features to facilitate the construction and resolution of the Schur complement. These latter have
been implemented for FEM/BEM modelling in Code_Carmel3D.

We will now look at the process of factorisation itself. It is clearly explained in a good number of
books30. Hence, we will not deal with it in detail. We will just say that this is an iterative process
organised schematically around three loops: one said to be “in i” (on the rows of the working
matrix), the second “in j” (the columns respectively) and the third “in k” (the factorisation steps
respectively). They iteratively construct a new matrix Ãk+1 from some of the data from the
previous one, Ãk, using the conventional factorisation formula that is formally written:

Loops with i, j, k

Ãk+1 (i, j) := Ãk (i, j) − Ãk (i, k) Ãk (k, j)
Ãk (k, k)

(15.27)

Initially the process is activated with Ã0 = K and at the last step, we recover in the square
matrix ÃN the triangular parts (L and/or U) or diagonal parts (D) that interest us. For example,
in the case L D LT :

Loops with i, j, k
if i < j : L (i, j) = ÃN (i, j)
if i = j : D (i, j) = ÃN (i, j)

(15.28)

Remark 15.3.3 The formula 15.27 contains the problems inherent in direct methods: in sparse
storage, the fact that the term Ãk+1 (i, j) can become non-zero whereas the term Ãk (i, j) is non-
zero (concept of fill-in of the factorisation, thus implying a renumbering or “ordering”); the propa-
gation of rounding errors or the division by zero through the term Ãk (k, k) (the concept of pivoting
and balancing the terms of the matrix or “scaling”).

15.3.2 The various approaches
The order of the i, j and k loops is not fixed. We can swap them and perform the same operations
but in a different order. This defines six variants kij, kji, ikj, etc. which will manipulate different
areas of the current matrix: “zone of new calculated terms” via 15.27, “already calculated and
used zone” in TO REVIEW, “already calculated and unused zone” and “not yet calculated zone”.
For example, in the jik variant, we have the following method of operation for fixed j:

29For dense, Coppersmith and Winograd (1982) showed that this algorithmic complexity could be reduced at
best at CNα with α=2.49 and C constant (for large N) .

30G. H. Golub & C. F. VanLoan, Matrix computations. G. W. Stewart, Matrix computations. T. A. Davis,
Direct methods for sparse linear systems. G. Meurant, Computer solution of large linear systems. I. Duff, Direct
methods for sparse matrix.
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Terms already computed and not modified

Terms already computed and used

Terms being calculated

Terms not yet computed

Figure 15.10: Method for constructing a “jik” (“right looking”) factorisation.

Remark 15.3.4 The method implemented in MUMPS is column orientated (“kji”).

Remark 15.3.5 Some variants have special names: Crout (“jki”) and Doolitle (“ikj”) algorithms.

Remark 15.3.6 In papers, we often use the English terminology referring to the orientation of
matrix manipulations rather than the order of the loops: “looking forward method”, “looking back-
ward method”, “up-looking”, “left-looking”, “right-looking”, “left-right-looking”, etc.

All these variants are available according to:

• Whether we exploit certain properties of the matrix (symmetry, positive-definite character,
band, etc.) or we seek the widest scope of application;

• Whether we perform scalar processing or by blocks;

• Whether the decomposition into blocks is determined by memory aspects (see paginated
L D LT method in Code _Aster) or rather linked to the independence of subsequent tasks
(see Aster native multifrontal and MUMPS);

• Whether we re-introduce null terms in the blocks to facilitate access to data31 and to generate
very efficient algebraic operations, often via BLAS332 (see native Aster multifrontal and
MUMPS );

• Whether we group contributions affecting a block of rows/columns (“fan-in” approach, see
PaStiX) or whether they are applied as soon as possible (“fan-out”);

• Whether in parallelism, we seek to manage different levels of sequences of independent
tasks, whether they are ordered statically or dynamically, whether we cover the calculation
by communication, etc.

• Whether we apply pre- and post-processing to reduce fill-in and improve the quality of
results: renumbering of the unknowns, scaling the terms of the matrix, partial pivoting
(row) or total (row and column), scalar or diagonal blocks, iterative refinement, etc.

They are often grouped into four categories:

• Classic algorithms: Gauss, Crout, Cholesky, Markowitz (Matlab, Mathematica, Y12M, etc.)
;

31This sparse/dense compromise allows a reduction in indirect data addresses and thus to better use the memory
hierarchy of current machines.

32The “ calculation/memory access” ratio of Blas level 3 (matrix product/matrix) is N times better (with N the
size of the problem) than other Blas levels. It is also often superior to that of “handmade” routines not optimised
on these “data locality/memory hierarchy” aspects.
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• Frontal methods (MA62, etc.);

• Multifrontal methods (MULT_FRONT Aster, MUMPS, SPOOLES, TAUCS, UFMPACK,
WSMP, etc.);

• Supernodals (SuperLU, PaStiX, CHOLMOD, PARDISO, etc.).

15.3.3 Main steps
When dealing with sparse systems, the numerical factorisation phase (see expression 15.28) does
not apply directly to the initial matrix K, but to a working matrix Ktravail resulting from a
pre-processing phase. This is done in order to reduce fill-in, improve calculation precision and
thus optimise subsequent CPU and memory costs. Roughly speaking, this working matrix can be
written as the following matrix product:

Ktravail = P0 Dr K Qc Dc PT
0 (15.29)

for which we will describe the different elements below.

We can thus break down the operation of a direct solver into four steps:

• Pre-processing and symbolic factorisation:33 it inverts the order of the columns in the work-
ing matrix (via a permutation matrix Qc) to avoid division by zero of the term Ãk (k, k)
and reduce fill-in. In addition, it rebalances the terms to reduce rounding errors (via scaling
matrices Dr and Dc). This phase can also be critical for algorithmic efficiency (sometimes
a 10-fold gain) and the quality of the results (a gain of 4 or 5 decimals).
In this phase, we also create the storage structures of the sparse factorisation matrix and
the auxiliaries (dynamic pivoting, communication, etc.) required in the following phases.
In addition, the task dependency tree is estimated, with initial allocation based on the
processors and total projected memory consumption.

• The renumbering step:34 it interverts rows in the matrix (via the permutation matrix P0)
to reduce the fill-in that factorisation implies. Indeed, in the formula 15.27, we see that the
factorisation (Ãk+1 (i, j) ̸= 0) may contain a new non-zero term in its profile while the initial

matrix did not (Ãk (i, j) = 0). Due to the term Ãk (i, k) Ãk (k, j)
Ãk (k, k)

not necessarily zero.

In particular, it is non-zero when we can find non-zero terms of the initial matrix of type
Ãk (i, l) or Ãk (l, j) (l < i and l < j). This phenomenon can lead to very large additional
memory and calculation costs (the factorisation can be 100 times larger than the initial
sparse matrix!).
Hence the idea of renumbering the unknowns (and hence swapping the rows of K) in order to
curb this phenomenon which is the real “Achilles heel” of direct methods. To do this, we often
use external products (METIS, SCOTCH, CHACO, JOSTLE, PARTY, etc.) or heuristics
embedded with the solvers (AMD, RCMK, etc.). Of course, these products show different
levels of performance depending on the matrices processed, the number of processors, etc.

33The code_Carmel parameter to control this step is mumps_pre. It is useful in both uses of the product: direct
solver and preconditioner.

This stage can also provide the user with RAM, disk and flops (Floating-Point Operations per Second) pre-
evaluations of MUMPS requirements. These are found in the views that the Carmel user gets when selecting the
memory requirement pre-estimation option: LinearSolverType = 5.

34The code_Carmel parameter to control this step is mumps_renum. With the value “AUTO”, it will choose
the most appropriate of the available renumberers (MUMPS incorporates a number of simple renumberers (AMD,
AMF, QAMD, PORD) and often “industrial” renumberers (METIS, SCOTCH)). It is useful in both uses of the
product: direct solver and preconditioner.
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Among them, METIS 35 and SCOTCH 36 are very common and “often come out best” (a
gain of up to 50%).

• Numerical factorisation phase:37 it implements the formula 15.27 through the methods seen
in the preceding section. This is by far the most costly phase that will explicitly construct
sparse factorisations L LT , L D LT or L U.

• Resolution phase:38 it carries out the forward/backward algorithms 15.26 from which the
solution u “springs” (at last!). It is low cost and possibly pools a later numerical factorisation
(multiple second members, simultaneous resolutions, restarting calculations, etc.).

Remark 15.3.7 Steps 1 and 2 only require knowledge of the initial matrix elimination graph. So,
in the end, only data that can be stored and manipulated as integers39. They only need the matrix
terms if the scaling steps are engaged. In plugging in MUMPS to code_Carmel (and Code_Aster),
we look more for robustness than performance and provide the product with the full matrix terms
and not just their graphs.

Remark 15.3.8 Steps 1 and 4 are independent, while steps 2 and 3, in contrast, are linked.
Depending on the algorithmic products/approaches, they are grouped differently: 1 and 2 are linked
in MUMPS, 2 and 3 in SuperLu and 1, 2 and 3 in UMFPACK. MUMPS allows steps 1+2, 3 and
4 to be carried out separately but successively, and even their results to be pooled to carry out
various sequences. For the moment, in code_Carmel, we use mainly the sequences 1+2+3+4
(direct solver), 1+2+3 then 4 several times (direct solver with pooling of the tangent matrix or
preconditioner for PCG) and 1 (memory pre-estimate).

Remark 15.3.9 Some products offer to test several strategies in one or more steps and choose
the most suitable: SPOOLES and WSMP for step 1, TAUCS for step 3, etc.

Remark 15.3.10 The renumbering tools used in the first phase are based on a wide variety of
concepts: engineering methods, geometric or optimisation techniques, graph theory, spectral the-
ory, taboo methods, evolutionary algorithms, memetic algorithms, algorithms based on "colonies of
ants", neural networks, etc. All moves are allowed to improve the local optimum in the form in
which the renumberer problem is expressed. These tools are also often used to partition/distribute
meshes. In general, METIS is the most effective. But it also competes with its Bordeaux chal-
lenger: SCOTCH.

Remark 15.3.11 In addition to the numerical steps described above, there are also steps to man-
age IT contingencies: initialisation or destruction of the calculation instance, filling it with data
from code_Carmel, transfer of the calculated solution to code_Carmel... They are detailed in the
section of this document describing the software project.

15.3.4 Main difficulties
Among the difficulties faced by “sparse direct methods” are:

• The manipulation of complex data structures that optimise storage (see matrix profile) but
complicate the algorithmics (see pivoting, OOC40... ). This helps to lower the “calcula-
tion/data access” ratio.

35http://glaros.dtc.umn.edu/gkhome/views/metis/.
36http://www.labri.fr/perso/pelegrin/scotch/scotch_fr.html.
37In code_Carmel, we are currently limited to the factorisations L U. The parameters to control this step are

mumps_memory, mumps_pivot and Lmumps_autocorrec. They are useful in both uses of the product: direct solver
and preconditioner.

38The code_Carmel parameters to control this step are mumps_post and kEpsilonMUMPS. They are most useful in
the direct solver scenario. In preconditioner use, it is better to unplug them.

39Only the last two steps really need the actual terms of the matrix.
40IC for In-Core (all data structures are in RAM) and OOC for Out-Of-Core (some are dumped to disk).
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• The effective management of data in relation to the memory hierarchy and the IC/OOC
toggle. This is a recurring issue for many problems, but which is pervasive here due to the
high consumption of computation.

• The management of the sparse/dense compromise (for frontal methods) with respect to
memory consumption, ease of access to data, and the efficiency of the linear algebra building
blocks.

• The choice of the right renumbering: this is an NP-complete problem! For problems of large
size, we cannot find the optimal renumbering in a “reasonable” time . We have to settle
for a “local” solution. This issue is becoming more pressing with the emergence of parallel
renumberers (ParMetis and PT-Scotch).

• The effective management of rounding error propagation via scaling, pivoting, and error cal-
culations on the solution (direct/reverse error41 and conditioning). This point is particularly
crucial for Carmel’s singular systems.

• The factorisation size which is often “bottleneck” n˚1. Its distribution between processors
(via distributed parallelism) and/or OOC do not always overcome this hurdle (see Figure
15.11). Given the current use of Carmel, which focuses mainly on desktop machines with
little RAM, this disadvantage is particularly limiting. It will be partially lifted by the use
of parallel clusters.

Figure 15.11: The “scourge” of sparse direct solvers: factorisation size; A factor of 35 between the
size of the matrix and that of its factorisation (for the Code_Carmel3D test case TEAM7, on the
left) or more than 100 (for the TOLE_CP1_APHI, study, on the right).

15.3.5 The MUMPS product
15.3.5.1 History

MUMPS is a multifrontal “massively” parallel package (“MUltifrontal Massively Parallel sparse
direct Solver”) developed during the European PARASOL Project (1996-1999) by teams from three
laboratories: CERFACS, ENSEEIHT-IRIT and RAL (I. S. Duff, P. R. Amestoy, J. Koster and J.
Y. L’Excellent). Since this finalised (MUMPS 4.04 22/09/99) and public (free of charge) version,
thirty other versions have been delivered (1 or 2 per year). These developments correct anomalies,
extend the scope of application, improve ergonomics and, above all, enrich functionality. MUMPS
is therefore a long-term, upgradable product42 and maintained by teams from IRIT, CERFACS,
CNRS and INRIA (half a dozen people).

The product is public and downloadable on its website: http://graal.ens-lyon.fr/MUMPS.
There are about 1,000 direct users (of which 1/3 Europe + 1/3 USA) without counting those who
use it via the libraries that include it (PETSc, TRILINOS, Matlab and Scilab). Its website offers

41Often referred to as “forward/backward errors”.
42This product, initially only dedicated to one use, has gradually become a true development platform totalling

more than 250,000 lines (C and F90).
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Figure 15.12: Main contributors to MUMPS: organisations, projects, and... researchers.

Figure 15.13: Home page of the MUMPS website.

documentation (theoretical and usage), links, examples of applications, as well as a discussion
forum (in English) tracing feedback on the product (bugs, installation problems, tips, etc.).

Every year, a dozen or so algorithmic/computational projects lead to improvements in the
package (theses, post-docs, research projects, etc.). It is also used regularly for industrial studies
(EADS, CEA, BOEING, GeoSciences Azur, SAMTECH, Code_Aster/Telemac...).

EDF R&D has been collaborating on it since 200743 active and mature (“win-win”) with the
MUMPS team. Initiated informally in the framework of ANR SOLSTICE, it was then formalised
in the form of an EDF/INPT partnership on low-rank. This collaboration will evolve in 2014 and
should take the legal form of a consortium.

The very good progress with this collaboration led us to organise, on the EDF Lab Clamart
website, the “MUMPS Users Group Meeting 2013”44.

43Exchanges of feedback, reporting of bugs, expertise, specification assistance, independent validation, co-
financing of research work, proofreading of documentation, etc. See EDF internal note H-I23-2013-03942. MUMPS
Linear Solver: software project in Code_Aster, C. Weisbecker’s PhD thesis on low-rank compressions and
EDF/INPT partnership.

44http://mumps.enseeiht.fr/ud_2013.php.
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15.3.5.2 Main characteristics of MUMPS

MUMPS implements a multifrontal factorisation L U or L D LT (see paragraph 15.3.2). Its main
characteristics are:

• Large scope of application45 SPD, arbitrary symmetric, non-symmetric, real/complex, sin-
gle/double precision, regular/singular matrix.

• Permits three data distribution modes: basic, centralised assembly or distributed assembly46.

• Interfaçage in Fortran (used), C, Petsc, Matlab/Octave and Scilab.

• Default configuration47 and possibility to let the package choose some of its options according
to the type of problem, its nature and the number of processors.

• Modularité48 (3 distinct interchangeable phases) and some of the numerical mysteries of
MUMPS can be opened up. This allows the (very) advanced user to output the results of
certain pre-processing operations (scaling, pivoting, renumbering), modify or replace them
with others and reinsert them into the tool-specific string of calculations.

• Different resolution strategies: one-shot, multiple second members, simultaneous resolutions
and Schur complements49.

• Different renuméroteurs embedded or external: METIS, AMD, QAMD, AMF, PORD, SCOTCH,
“user supplied”50.

• Ancillary features51: small pivot detection, rank/kernel calculation and regular solution
calculation, solution error analysis.

• Pre- and post-processing52: scaling, static and dynamic pivoting, row/column permutation
and 2x2 scalar/block, iterative refinement.

• Parallelism53: potentially at 2 levels (MPI+theads of BLAS3), asynchronous task/data
flow management and dynamic reordering, calculation/communication cover; Distribution
of data associated with task distribution; This parallelism only starts, for the moment, at
the factorisation stage.

• Mémoire54: dumping or not of the factorisation to disk (In-Core or Out-Of-Core modes)
with prior estimation of RAM consumption per processor in both cases; The OOC mode
only starts, for the moment, at the factorisation stage.

In terms of parallelism, MUMPS operates on two levels: an external level linked to the con-
current elimination of frontals (via MPI), the other internal, within each frontal (via “threaded”
BLAS). It is this type of hybrid parallelism that is relatively flexible, efficient and “push-button”
that we want to implement soon in Code_Carmel. In addition, it is sufficiently user friendly to
be able to spread upstream and downstream of simple solver aspects (matrix construction, post-
processing). This is to the great benefit of users and has relatively little impact for developers.

45In real arithmetic, almost this entire scope is now regularly exploited in EDF R&D. codes
46The last two modes are used in Code_Aster and so far, only the second one is in Code_Carmel.
47Used in Code_Aster and Code_Carmel. This principle is even applied as much as possible to all other types

of parameter (the famous “AUTO” mode for AUTOmatic).
48Much used in Code_Aster and Code_Carmel. This is the very heart of the sophisticated integration of MUMPS

with these codes. Thanks to these properties, this tool can be used for a wide range of scenarios, and different
levels of use can be arranged: standard, robust, high-performance, advanced, expert, etc.

49The last three modes are used in Code_Aster, the first two in Code_Carmel.
50All can potentially be called in couplings of Code_Aster and Code_Carmel with MUMPS, except the last

mode.
51Used in some features of Code_Aster and often essential for Code_Carmel (non-gauged modelling).
52Used (and often essential for difficult modelling) in Code_Aster and Code_Carmel.
53Used, for now, only in Code_Aster.
54Used in all ways possible by Code_Aster/Carmel: user-determined choice, automatic choice, and memory

pre-estimates.
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Figure 15.14: MUMPS functional flowchart: its three stages in centralised/distributed parallel
and IC/OOC.

15.3.5.3 Advantages and specific features

15.3.5.3.1 Pivoting
The pivoting technique involves choosing a suitable term Ãk (k, k) (in the formula 15.27) to

avoid dividing by a term that is too small (which would amplify the spread of rounding errors
when calculating the following terms Ãk+1 (i, j)). To do this, you swap rows (partial pivoting)
and/or columns (total pivoting) to find the appropriate denominator of 15.27. For example, in
the case of partial pivoting, the “pivot” term Ãk (r, k) is chosen such that:

Ãk (r, k) > umax
i

|tildeAk (i, k) | withu ∈ ]0, 1[ (15.30)

Figure 15.15: Choosing the partial pivot in step k.

This results in an amplification of rounding errors up to (1+ 1
u ) at this step. What is important

here is not so much to choose the largest possible term in absolute value (u=1) as to avoid choosing
the smallest! The reverse of these pivots also occurs during the forward/backward phase, so it
is important to avoid these two sources of error amplification by choosing a middle u. MUMPS,
like many packages, suggests u=0.01 by default (MUMPS parameter CNTL(1)). To pivot, we
generally use scalar diagonal terms but also blocks of terms (2x2 diagonal blocks).

In MUMPS, two types of pivoting are implemented, one called “statique” (during the analysis
phase), the other called “numérique” (during the numerical factorisation). They can be configured
and enabled separately (see MUMPS parameters CNTL(1), CNTL(4) and ICNTL(6)). For SPD
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or dominant diagonal matrices, these pivoting powers can be safely disabled (the calculation will
gain speed), but in other cases, they must be initialised to manage any very small or zero pivots.
This usually involves more fill-in of the factorisation but increases numerical stability.

Remark 15.3.12 This pivoting feature makes MUMPS essential for handling Carmel’s singular
models (and some in Code_Aster).

Remark 15.3.13 The Carmel user does not have direct access to this fine configuration. They
are enabled with default values. The user can just choose to partially unplug them by setting
mumps_pre = ’OFF’. By default it is set to ’AUTO’.

Remark 15.3.14 For our industrial simulations (Carmel, Aster or TELEMAC) it is not wise
to forgo numerical pivoting or even to enable static pivoting. This type of configuration is best
reserved only for testing purposes.

Remark 15.3.15 The additional fill-in due to numerical pivoting must be ordered as soon as
possible in MUMPS (from the analysis phase). This is done by arbitrarily forecasting a percentage
of memory overconsumption compared with the expected profile. This number must be entered as
a percentage in MUMPS parameter ICNTL(14). It is accessible to the Carmel user via the key
word mumps_pivot (20% by default).

Remark 15.3.16 The user may need to change this number (up to 100% or more), especially
when setting the memory management mode (mumps_memory = ’IC’ or ’OOC’). In automatic
mode (mumps_memory = ’AUTO’), we pre-estimate and provided MUMPS with all available RAM
so that it best organises its unannounced memory over-allocations due to pivoting. As a result, this
type of problem (“not enough additional space for pivoting”) occurs much less often. And when it
appears, the AUTO mode increases the value, transparently for the user, and retries the numerical
factorisation. In case of failure, we try again several times55, doubling the value each time. This
self-correction procedure is enabled by default (parameter Lmumps_autocorrec = .true.) and lets
the user intervene as little as possible in management of these “computer-numerical” contingencies.

15.3.5.3.2 Iterative refinement
At the end of resolution, having obtained the solution u of the problem, we can easily evaluate

its residual r := K u−f . Knowing the factorisation of the matrix already, this residual can then be
input, at low cost, into the following iterative enhancement process (in the general non-symmetric
case):

Loop with i
(1) rii = f i − K ui

(2) L U δui = ri

(3) ui+1 ⇐ ui + δui

(15.31)

This process is “relatively”56 painless since it costs mainly the price of the forward/backward
step (2). It can thus iterate up to a certain threshold or a maximum number of iterations. If the
residual calculation does not contain too many rounding errors, i.e. if the resolution algorithm is
quite reliable (see next paragraph) and the conditioning of the matrix system is good, this iterative
refinement process57 is very beneficial to the quality of the solution.

In MUMPS this process is enabled or not (parameter ICNTL(10)) <0) and bounded by a
maximum number of iterations Nerr (ICNTL(10)). The 15.31 process continues as long as the
“balanced residual” Berr is above a configurable threshold (CNTL(2), set by default to

√
ε where

ε is the machine accuracy):
55Up to 4 times.
56In OOC mode this feature can be very costly depending on the speed of disk access. We often prefer to unplug

it unless we are absolutely looking to give priority to the quality of the result.
57We also call it “iterative enhancement” (’iterative refinement’).
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Berr := max
j

|ri
j |

(|K||ui| + |f |)j

(15.32)

or it does not decrease by a factor of at least 5 (not configurable). Usually one or two iterations
are enough. If not, it is often indicative of other problems: poor conditioning or reverse error (see
next paragraph).

Remark 15.3.17 For the user of code_Carmel, these MUMPS parameters are not directly ac-
cessible. The functionality is only enabled if the user knowingly chooses to estimate and test
the quality of the solution (see next paragraph). For example, via the parameter post_mumps
= ’AUTO’ ‘FORCE’. In these pre-configured scenarios, this value is initialised either to ’OFF’
(Nerr=0 / threshold=10+50), ’FORCE’ (Nerr=10 / threshold=10−50) or ’AUTO’ (Nerr=4 /
threshold=10−14).

Remark 15.3.18 The number of iterations actually performed is plotted in the MUMPS display
block.

Remark 15.3.19 This feature is present in many packages: Oblio, PARDISO, UFMPACK,
WSMP, PaStiX, etc.

15.3.5.3.3 Reliability of the calculations
To estimate the quality of a linear system’s solution, MUMPS offers numerical tools derived

from the theory of reverse analysis of rounding errors initiated by Wilkinson (1960). In this theory,
rounding errors due to several factors (truncation, finite arithmetic operation, etc.) are treated as
disruptions to the initial data.

This makes it possible to compare them with other sources of error (measurement, discretisa-
tion, etc.) and to manipulate them more easily via three indicators obtained in post-processing:

• The conditioning cond(K,f): it measures the sensitivity of the problem to data (unstable
problem, poorly formulated/discretised, etc.). In other words, the multiplication factor that
the manipulation of the data will apply to the result. To improve it, we can try to change
the formulation of the problem or balance the terms of the matrix, outside of MUMPS or
via MUMPS (mumps_pre =’AUTO’).

• The reverse error be(K,f) (“backward error”): it measures the propensity of the resolution
algorithm to pass on/amplify rounding errors. A tool is said to be “reliable” when this
number is close to the machine accuracy. To improve it, we can try to change the resolution
algorithm or modify one or more of its steps (in Code_Carmel we can adjust the parameters
mumps_post or mumps_renum).

• The direct error fe(K,f) (“forward error”): it is the product of the previous two digits and
provides an upper bound for the relative error on the solution.

∥δu∥
∥u∥

< cond (K, f) × be (K, f)︸ ︷︷ ︸
fe (K, f)

(15.33)

We can give a graphical representation (see Figure 15.16) of these concepts by expressing the
backward error as the difference between the initial “exact” data (f) and that “actually manipu-
lated” (f + δf), while the forward error measures the difference between the “exact” solution (u)
and the solution actually obtained (u+ δu), that of the problem disrupted by the rounding errors.
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Exact resolution

Exact resolution
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Figure 15.16: Graphical representation of the concept of forward and backward error.

For linear systems, the backward error is measured via the balanced residual:

be (K, f) := max
j∈J

|f − Ku|j
(|K||u| + |f |)j

(15.34)

It cannot always be evaluated on all indices (J ̸= [1, N ]N ). Especially when the denominator
is very small (and the numerator is non-zero), we prefer the formulation (with J∗ such that
J ∪ J∗ = [1, N ]N ):

be∗ (K, f) := max
j∈J∗

|f − Ku|j
(|K||u|)j + ∥Kj.∥∞∥u∥∞

(15.35)

where Kj. is the j-th row of matrix K. With these two indicators we associate two estimates
of the matrix conditioning (one linked to the rows selected in the set J and the other in its
complement J∗): cond(K,f) and cond∗(K,f).

The theory then gives us the following results:

• The approximate solution u is the exact solution to the disrupted problem:

(K + δK) u = (f + δf)
avec δKij ≤ max (be,be∗) |Kij |

et δfi ≤ max (be.fi,be∗.∥Ki.∥∞∥u∥∞)
(15.36)

• We have the following increase (via the forward error fe(K,f)) on the relative error in solution:

∥δu∥
∥u∥

< cond × be + cond∗ × be∗︸ ︷︷ ︸
fe (K, f)

(15.37)

In practice, the latter estimate (K,f) and its components are scrutinised. Its order of magnitude
indicates roughly the number of “true” decimals of the calculated solution. For Carmel’s “very”
singular problems, a tolerance of 10−3 is not uncommon.

Remark 15.3.20 For the user of Code_Carmel these MUMPS parameters are calculated and
displayed in the display block “MONITORING OF OVERALL MUMPS RESOLUTION...” as
soon as this information is requested (parameter Imonitoring_systeme > 1 in solver, > 2 in
preconditioner). Because its cost may not be negligible: between 10% and 30% of the total cost
(especially in OOC).

Remark 15.3.21 Enabling this feature is not necessarily necessary when the solution sought is
itself corrected by another algorithmic process (Newton’s method, etc.). In short, in non-linear, we
can often do without it (mumps_post = ’OFF’). Especially if we have already made the approxi-
mation to pool the linear solver aspects (factorisation or preconditioner) between several iterations
of the non-linear solver (reacprecond_methodeNL > 0).
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Remark 15.3.22 If the Code_Carmel user has enabled this automatic quality check (mumps_post
other than ’OFF’) and it exceeds the criterion set by kEpsilonMUMPS > 0 (10−6 by default), the
calculation stops with a fatal error. If kEpsilonMUMPS < 0, we estimate the quality of the solution
(and possibly display it) but we do not test it and we do not stop. Warnings may appear if the
values of these parameters appear suspicious (for example, kEpsilonMUMPS > 0 and mumps_post
=’OFF’).

Remark 15.3.23 This type of functionality appears to be rarely found in libraries: LAPACK,
Nag, HSL, etc.

15.3.5.3.4 Memory management
We have seen that the major disadvantage of direct methods is the size of the factorisation.

To allow larger systems to be moved into RAM, MUMPS offers to dump this object to disk: this
is the Out-Of-Core (OOC) mode as opposed to the In-Core (IC) mode where all data structures
reside in RAM. This method of saving RAM is complementary to the distribution of data that
parallelism naturally induces. The added value of OOC is therefore particularly significant for
moderate numbers of processors (<32 processors).

On the other hand, the MUMPS team has been very attentive to the CPU overhead generated
by this practice. By reworking the algorithmics of the code, and the manipulation of the dumped
entities, they have been able to keep this overhead (a few percent and above all in the resolution
phase) to a minimum.

Disk

Figure 15.17: Two types of memory management: all in RAM (IC) and RAM/disk (OOC).

Remark 15.3.24 The MUMPS parameters ICNTL(22)/ICNTL(23) allow configuration of dif-
ferent memory management modes. The Carmel user only has direct access to it via the key word
mumps_memory (’IC’/’OOC’/’AUTO’). For the value ’AUTO’, the IC and OOC values are cho-
sen dynamically according to the memory available on the current node. In case of a problem, if
Lmumps_autocorrec = .true., we try to correct it dynamically (see section 15.3.5.3.1).

Remark 15.3.25 When automatic mode is required, if a computer problem prevents the evalua-
tion of available RAM, we revert to the conservative choice of OOC.

Remark 15.3.26 The disk dump is fully controlled by MUMPS (number of files, dump/reload
frequency, etc.). We just have to enter the memory location: this is the naturally the working
directory of the executable for each processor (defined by %OOC_TMPDIR = ’.’). These files
are automatically deleted by MUMPS when the associated instance is deleted. This avoids disk
overload when different systems are factorised in the same resolution.

Remark 15.3.27 Other OOC strategies would be possible or are already coded for certain packages
(PaStiX, Oblio, TAUCS, etc.). We are thinking in particular of the ability to modulate the scope
of dumped objects or even to reuse them on disk during another run. This last strategy would prove
very valuable for certain uses of Carmel.
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15.3.5.3.5 Management of singular matrices
One of the strong points of the product is its management of singularities. It is not only

capable of detecting numerical singularities58 of a matrix and summarising the information for an
external use (rank calculation, warning to the user, display of expertise, etc.), but in addition,
despite this difficulty, it calculates a “regular” solution59" or even all or part of the associated
kernel.

These new developments were one of the deliverables of ANR SOLSTICE. We had requested
them from the MUMPS team (in partnership with the Algo team of CERFACS) to make this
product iso-functional with respect to the other direct solvers of Code_Aster.

This feature finds a second field of application with the potentially singular numerical modelling
in Code_Carmel. Apart from iterative solutions already integrated into the code, MUMPS is
probably one of the few products equipped to resolve this type of difficulty. The tests conducted
during this software project thus complete the evaluation undertaken during ANR and feedback on
use in Code_Aster. On the other hand, here again, the needs of Carmel/Aster are complementary:

• For Code_Carmel it is a question of finding a possible solution to the problem.

• For Code_Aster, this situation is often considered pathological. In this case, we want to
warn the user of a problem with the data (boundary condition, contact, etc.) or send a
signal to the algorithm (time step refinement, etc.).

And in practice, how does MUMPS do it?
In broad outline, when constructing the factorisation matrix, it detects rows with pivots60 that

are very small (compared with a criterion CNTL(3)61). It lists them in the vector PIVNUL_LIST(1:
INFOG(28)) and, as appropriate, either replaces them with a pre-set value (via CNTL(5)62 ), or
it stores them separately. The resulting (smaller) block will subsequently undergo an ad hoc QR
algorithm.

And finally, iterations of iterative refinements complete this labyrinth. Since they use this
“retouched” factorisation only as a preconditioner, and they benefit from the exact information of
the matrix-vector product, they provide the “biased” solution63 back on the right track!

Remark 15.3.28 The MUMPS parameters ICNTL(13) / ICNTL(24) / ICNTL(25) and CNTL(3)
/ CNTL(5) allow configuration of these features. They cannot be changed by a standard use of
Code_Carmel. Out of caution, the functionality is always enabled.

Remark 15.3.29 This functionality can also be valuable in domain decomposition (FETI linear
solver, preconditioner) and modal calculation (rigid mode filtering).

15.3.6 Implementing MUMPS in code_Carmel
15.3.6.1 Version compatibility and copyright

The copyright of the MUMPS product (reproduced in section K) must be attached to the theoret-
ical documentation and/or the Code_Carmel. user manual. It reminds the user of the authorship
of the product and the conditions of its use.

58The MUMPS parameters ICNTL(13) /ICNTL(24) / ICNTL(25) and CNTL(3) / CNTL(5) allow these features
to be configured. They are not modifiable in standard use of Code_Carmel. Out of caution, the feature is kept
permanently enabled.

59This is a possible solution of the problem at the time the second member f ∈ ker
(

KT
)T . Which in our

symmetric case is f element of the image space.
60Strictly, this is the infinite norm of the row of the working matrix with the pivot.
61By default it is set to 10−8 (in double precision) and 10−4 (in single) because these numbers represent (empir-

ically) a loss of at least half the level of precision if the factorisation is continued.
62This value must be large enough to limit the impact of this change on the rest of the factorisation. In Carmel,

it is set to 106 ∥Ktravail∥.
63This is the same mechanism as for static pivoting.
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The main features of MUMPS have just been described in the preceding sections. Their
links with configuration specific to Code_Carmel and comparisons with other EDF R&D uses
(Code_Aster, TELEMAC, etc.) or comparable tools (PaStiX, Pardiso, etc.) were also mentioned.

These parameters, which can be explicitly changed in the configuration file.F9064 , are only per-
missible if Code_Carmel has been linked to MUMPS beforehand (see makefile and USE_MUMPSvariable).

The compatible versions of MUMPS are v4.9.2 and v4.10.0. There is no need to go too far in
backward compatibility. The oldest version of MUMPS for which we ensure compatibility already
dates back to November 2009!

And in any case, it is only from this version that MUMPS has stabilised features crucial for
the needs of Code_Carmel: management of singular systems, Out-Of-Core memory management
and pre-allocation of memory requirements.

This compatibility is tested every time a linear system is initialised (see InitializeOccMUMPS
routine) but is only displayed in the .log the first time65. In case of version incompatibility, a
dedicated message is sent.

15.3.6.2 Ergonomic choices

In fact, MUMPS is more of a tool kit than a product dedicated to a single task. Its entry points
are numerous (about fifty parameters) and its interactions multiple (combined parameter sets, a
hundred messages and warnings). In short, the range of possible choices remains considerable. It
is therefore preferable to relieve the user of Code_Carmel and to group these parameters in order
to provide a minimal API.

As a result, we have simplified and grouped these MUMPS settings into just eight Code_Carmel.
parameters. This choice to group this rich configuration into sub-categories (often pre-configured
and dynamically enabled), allows users to gradually access this functionality.

Depending on their expertise, needs and appetite, they can choose the mode of operation that
best suits them: from “push-button” use through to very advanced use.

The priority when using MUMPS in Code_Carmel being:

• “Maximum scope of application” and “Service continuity”. Thus not restricting the uses of
the product while trying to self-correct as many internal MUMPS problems as possible.

• Robustness of the numerical process.

• Precision of the results.

• Time and memory consumption.

When using MUMPS as a preconditioner, the last two objectives are swapped. Priority is given
to completing the preconditioning step as quickly as possible. It doesn’t matter how precise it is,
since we are already working on an approximate system (single precision and relaxed) and it is
inserted into an iterative and corrective process (PCG algorithm).

The internal MUMPS parameters can thus be broken down into four categories:

• Those prefixed “hard” in Code_Carmel66 because we know in principle the characteristics
of the calculation and the priority of users when they use MUMPS (system type, handling
singularities, pre and post-processing, etc.): a robust and safe calculation.
ICNTL: 1, 2, 3, 4, 13, 24 etc.
CNTL: 3, 5 etc.

• Those that can evolve dynamically according to the calculation and resources of the machine
(memory management, additional space dedicated to pivoting, etc.).
ICNTL: 14, 22, 23.

64As usual in Code_Carmel.
65So as not to overload the .log.
66In the InitializeOccMUMPS routine.
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• Those that are driven (often collectively) by the user. They have a default value or, at
the very least, an “AUTO” mode which lets the product or the Code_Carmel- MUMPS
integration decide according to the situation, the resources and the peripheral products
installed67.
ICNTL: 7, 6, 8, 10, 11, 12, 14, 22, 23 etc.
CNTL: 2.

In addition, when possible, we implement self-correcting procedures (if Lmumps_autocorrec =
.true.) to dynamically change this MUMPS configuration when a numerical or computer problem
occurs in the background of the external product. The priority is to ensure the continuity of the
calculation so as, for example, not to “crash” at the 500th linear system resolution just because
of not enough pivoting space!

Given the embryonic functionality of Code_Carmel in terms of intermediate restarts and
backup of computation results, it is essential to provide the user with this guarantee of “service
continuity”.

Remark 15.3.30 Pre-estimation, self-configuration, self-correction... we could eventually extend
this type of operation to other numerical tools of the code: ODE solver and non-linear solver, etc.

15.3.6.3 Code_Carmel parameters to use MUMPS

These Carmel parameters are grouped in the overview below (see Figure 5.4.1). The allowable,
recommended, and default values are summarised in the comments in the configuration file.

Figure 15.18: Parameters for using MUMPS in Code_Carmel.

In addition, the new Imonitoring_systeme parameter allows tracking of different information
about this linear system resolution step in the .log.

The new option LinearSolverType = 5 allows pre-evaluation of memory requirements (RAM
and possibly disk) of Code_Carmel based on the user parameters (in configuration.F90 and struc-
tureDonnées.F90), the characteristics of the problem processed and the available linear solvers
(PCG Crout/Jacobi with or without MUMPS direct solver and preconditioner).

Users can thus, initially and for a given study, calibrate their set of parameters with respect to
the available memory resources of their machine. They then start the calculation with the most
suitable configuration.

This mode of operation can even be used, quite simply, to pre-test their dataset and their
installation. If Code_Carmel manages to pre-evaluate all memory consumption, this is very
good sign! The code is most likely functional on this platform and the dataset probably legal!
Because the data was successfully read, the matrix was constructed and, if applicable (if MUMPS
is installed), the matrix was analysed by MUMPS.

This is a (light) deployment of this feature which can be very useful in practise: It is often less
costly than a portion of the study.

67METIS or SCOTCH renumberers.
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15.3.6.4 MUMPS warnings and error reporting

The MUMPS product is likely to send its user a hundred error messages and warnings. Of
course, there is no question of providing a “dry” MUMPS return code to the Carmel user, nor of
“customising” 68 each of the possibilities in detail.

We have thus chosen a middle road:

• Auto-corriger, as many parameters as possible (see previous section);

• Group these messages by category so as to send the final Carmel user a message that is
simple, clear and usable. Generally, either some advice is given to restart the calculation,
or it is suggested contacting the development team: the implication is that this study may
have highlighted a bug that needs to be investigated69.

15.4 Organisation of calculations with MUMPS
For the implementation of calculations with MUMPS, the priority has been on modularity, readabil-
ity and QA. Ten new routines have been created to this end. The main features of this integration
are described below.

15.4.1 Initialisation
When initialising the Carmel data structure70 containing data specific to the linear system (matrix,
RHS71...), we also initialise the associated MUMPS instance72 (matrix, RHS...). This ensures
dialogue with the numerical features of the product. It contains the control parameters for its
numerical features: 15 real and 44 integer.

This initialisation takes place by a call on

Call InitializeOccMUMPS(systeme) (15.38)

Once this instance has been finished with, it is supposed to be destroyed (via CleanOcc-
MUMPS) to gain memory space (RAM and disk) and avoid possible confusion. For the sake of
simplicity, there must be a bijection between a Carmel “system” and a MUMPS instance. The
latter cannot be enlarged, for example, once it has been created. If the Carmel system changes,
the MUMPS instance must be destroyed and recreated.

Remark 15.4.1 If there is already a MUMPS instance associated with the system, the routine
stops with an error. It must be first be destroyed via a CleanOccMUMPS.

Remark 15.4.2 This routine should be called before filling the matrix and the MUMPS RHS.

Remark 15.4.3 Many warnings may be issued when performing this routine: checks on configu-
ration, versions, installation, etc.

Remark 15.4.4 This initialisation occurs only if Code_Carmel has been linked to the external
product and the configured functionality requires it (LinearSolverType = 3, 4, or 5).

Remark 15.4.5 Unlike Code_Aster, , there is no limit on the number of simultaneous instances
that can exist in memory. This is not an issue (for example, not enough memory) at this time,
because only one linear system appears to be used in Code_Carmel.

68Unnecessary and quickly unmanageable when you want to be compatible with several versions.
69In MUMPS (or its dependencies), in the Code_Carmel-MUMPS integration or in Code_Carmel.
70A data structure called system. It is initialised in initialiserSysteme.
71Right-Hand-Side or second member.
72This instantiates a MUMPS derived type smumps_struc or dmumps_struc, depending on whether we are in

single or double precision.
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15.4.2 Filling
Then we read the Carmel matrix and analyse its characteristics. Next we initialise the associated
MUMPS instance and fill it with the appropriate matrix terms. Any outliers are filtered out73

along with extra-diagonal terms that are too small (if constructing a relaxed preconditioner).

CallInitFillMatrixMUMPS(systeme) (15.39)

Remark 15.4.6 If there is already a MUMPS matrix associated with this system, the routine
stops with an error. It must be first be destroyed via a CleanMatrixMUMPS.

Remark 15.4.7 During filtering, if the matrix has illicit values, depending on the case, the cal-
culation is stopped with a fatal error.

Remark 15.4.8 The results of the filtering (Carmel / MUMPS profile size, number of “outrange”
terms and number of relaxed terms) is plotted in the .log file if Imonitoring_systeme > 1 (direct
solver) or 2 (preconditioner).

We do the same with the second member via

Call InitFillRhsMUMPS(systeme,B) (15.40)

Remark 15.4.9 If there is already a MUMPS RHS associated with the system, the routine will
stop with an error. It must be first be destroyed via a CleanRhsMUMPS.

Remark 15.4.10 Filling of the second member of the MUMPS instance can be deferred and done
just before the forward/backward step (DoSolveMUMPS).

Remark 15.4.11 This modularity is very convenient when handling a preconditioner or imple-
menting a Newton method: we can easily and effectively pool the same matrix for many RHSs.

15.4.3 Calculation steps
The three calculation steps themselves (described in section 15.3.3) are performed through the
following calls:

• Pre-processing, symbolic factorisation and renumbering

Call DoAnalyseMUMPS(systeme,ramIC,ramOOC,diskOOC,objetMUMPS) (15.41)

• Numerical factorisation

Call DoFactorizationMUMPS(systeme,ramIC,ramOOC) (15.42)

• Forward/backward

Call DoSolveMUMPS(System) (15.43)

Then of course the MUMPS solution must be provided to the “Carmel world”. This is done
using the following utility:

Call GiveSolutionMUMPS(system,X) (15.44)

that fills the Code_Carmel X vector with the much sought-after solution!
73Depending on the arithmetic considered (single or double precision) and the desired function (direct solver or

single preconditioner).
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Remark 15.4.12 To use these routines, the MUMPS instance must of course have been created
and filled.

Remark 15.4.13 In theory, the analysis phase can be pooled for several factorisations. At least
so long as only the values of the matrix terms are changed. However, in order to preserve the
effectiveness of the pre-processing and the relevance of the “integration tricks” (pre-allocation of
memory, self-correction, etc.), it is better to repeat this step before each numerical factorisation.
The gain (in time and RAM) from pooling is often small in sequential mode. This will be much
less true in MPI parallel mode.

Remark 15.4.14 We can insert between 15.42 and 15.43 an RHS filling step (see 15.40). It is
not required before that. This results in “multiple-RHS” calculation methods for which we can pool
the numerical factorisation for many different RHSs.

Remark 15.4.15 Depending on the level of monitoring (via Imonitoring_systeme) and the in-
tended use (direct solver or preconditioner), each of these steps plots different elements: estimates
of memory requirements, time consumed, self-correction procedure enabled, numerical expertise,
system characteristics, etc.

Remark 15.4.16 The very large MUMPS objects containing the factorisation74 are not destroyed
until the instance is destroyed (CleanOccMUMPS) or a factorisation is re-attempted (DoFactori-
sationMUMPS). As they are likely to be reused on new RHSs.

15.4.4 Cleaning
Destroying the objects and the MUMPS instance is done through the following calls:

• MUMPS matrix

Call CleanMatrixMUMPS(systeme) (15.45)

• MUMPS RHS

Call CleanRhsMUMPS(systeme) (15.46)

• MUMPS instance

Call CleanOccMUMPS(systeme) (15.47)

Remark 15.4.17 To use these routines, the MUMPS instance must of course have been created
and filled.

Remark 15.4.18 Destroying the MUMPS instance must be the last step in a calculation method
using this external product.

74In RAM and on disk (if OOC has been enabled).
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Chapter 16

Force calculations

Abstract
Magnetic forces exerted on the moving parts of an electromagnetic system constitute important
values for the study of its operation. This is the case for pulsating torque in rotating machines or
forces that act on the surface of a magnetic material.

As a whole, these values can also be used for coupling with mechanical equations (calculation
of speed and position) [Vassent 1990] [Ren, Razek 1994]. At the local level, the results are used
to predict possible system deformations [Ren, Razek 1992], [Ren et al 1992],[Henneberger, Hadrys
1993].

To determine these forces, several calculation methods may be used. These methods include
those based on the calculation of force density (distribution of local force at the surface). Overall
force is then obtained through a sum of local forces. These methods use concepts based on
equivalent sources (loads or magnetic currents), the derivative of the magnetic energy or the
Maxwell stress tensor [Coulomb 1983], [Ren, Razek 1992], [Sadowski et al 1992], [Ren 1994]. In
a finite element calculation, these techniques use the distribution of local values in the domain
under study.

Here, we will focus on the overall calculation of force and torque by two methods: Maxwell
stress tensor and virtual work. These calculations are presented for 2D and 3D structures with
a discretisation, by the finite element method, of the electromagnetic field equations [Boualem,
Piriou 1996].

16.1 Maxwell stress tensor method

16.1.1 Principle
We want to calculate the forces and torque that act on a part D′ of the domain under study D.
This region is bounded by a surface Γ. The system may contain magnetic materials (linear or
non-linear) conductors or inductor regions with uniform current density (see Figure 16.1).

This calculation is performed by applying the Maxwell stress tensor T that is defined in a
vacuum (or equivalent medium) by the following expression [Durand 1968]:

Ti,j = µ0

(
hi hj − 1

2δij h
2
)

(16.1)

The Maxwell stress tensor allows calculation of the force acting on domain D′ by an integral
extended to a surface Γ′ surrounding it:
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F =
∫

D′
divT dD′ =

∮
Γ′
µ0

(
(h .n) h − 1

2 |h|2 n
)
dΓ′ (16.2)

Figure 16.1: Application of the Maxwell stress tensor.

The surface Γ′ can be arbitrary provided it is completely defined in a vacuum (or equivalent
medium). It must also cover the whole region of interest. n represents the outgoing normal to
this surface. From the previous expression, we can also deduce the value of the torque C:

C = r × F =
∮

Γ′
µ0

(
(h .n) (r × h) − 1

2 |h|2 (r × n)
)
dΓ′ (16.3)

r is the vector that connects the integration element “dΓ′” to the axis of rotation.

16.1.2 Discretisation
For the computational electromagnetics of electrotechnical systems, we are required to approach
the integrals giving the values of the force (16.2) or torque (16.3) by a finite sum effected on
surface Γ′. As a result, the latter is represented by an assembly of “Ne” surface elements in
3D or linear elements in 2D. Such entities are obtained by the intersection of the finite element
mesh with surface Γ′. As a result, only one part of the mesh elements is affected by the force
or torque calculation. For the magnetic field H, it is replaced by its numerical approximation on
each element.

We week to determine the components of force FT (Fx, Fy, Fz) and the torque. The torque
is calculated for a rotation of domain D′ around the Oz axis. It thus has only one component,
denoted Cz, The use of first-order tetrahedral elements requires a linear variation of the potential
considered. The magnetic field is then constant in each element for tetrahedra. For a surface
element Γ′e, the field and outgoing normal components are, respectively, heT

(
he

x, h
e
y, h

e
z

)
and

neT
(
ne

x, n
e
y, n

e
z

)
. It is noted that the choice of a flat elemental surface implies a single outgoing

normal. Using the previous notations in relation (16.2), we can then write the components of the
force F in the following matrix form (see annex M):

Fs = µ0

2

Ne∑
e=1

Γ′eHeT Ms He s = x, y, z (16.4)
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For each component of force F, matrix Me
s is written:

Me
x =

 ne
x 0 0

2ne
y −ne

x 0
2ne

z 0 −ne
x

 Me
y =

 −ne
y 2ne

x 0
0 ne

y 0
0 2ne

z −ne
y

 Me
z =

 −ne
z 0 2ne

x

0 −ne
z 2ne

z

0 0 ne
z


(16.5)

For the calculation of torque, the vector r is defined by the projections of the barycentre of
the surface element on the Oxy plane, i.e. reT

(
re

x, r
e
y, 0
)
. From relation 16.3, the component Cz

of the torque can be written:

Cz = µ0

2

Ne∑
e=1

Γ′e (heT Me
c he

)
(16.6)

Matrix Me
c is given by the following expression:

Me
c = re

x Me
y − re

y Me
x =

 −re
x n

e
y − re

y n
e
x 2 re

x n
e
x 0

−2 re
y n

e
y re

x n
e
y + re

y n
e
x 0

−2 re
y n

e
z 2 re

x n
e
z −re

x n
e
y + re

y n
e
x

 (16.7)

In the case of rotating machines, the torque calculation is performed using a surface placed in
the air gap. This is a cylinder of axis Oz and radius R. Using the cylindrical coordinates in the
previous expression, we obtain:

Me
c = 2R

 − cos θe sin θe cos2 θe 0
− sin2 θe cos θe sin θe 0

0 0 0

 (16.8)

where θe is the angle that vector re makes with the Ox axis.

In theory, this value of force or torque does not depend on the choice of the integration
surface Γ′. This is not always verified in computational electromagnetics [Coulomb, Meunier
1984], [Sadowski 1993]. In order to have sufficient precision, this surface must be placed so as to
connect the middles of the edges of the tetrahedra (see Figure 16.2). These elements belong to a
layer surrounding the modelled object. Depending on the layout of these elements in this layer,
two types of surface elements can be distinguished: triangles and quadrangles. Two algorithms
are thus required to calculate the surface and the barycentre.

ne

ne

mesh nodes

Figure 16.2: Surface element types - Intersection between a tetrahedral mesh and the integration
surface
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16.2 Virtual work method
16.2.1 Principle
We consider the same domain D′ as defined above (see Figure 16.1). We want to calculate the
forces and torque by the virtual work method. This approach is based on the principle of converting
magnetic energy into mechanical energy. We can show that the total force, in a direction “s”, is
calculated from the variation of the magnetic energy “w” of the system after a move in this same
direction. This movement is at constant flux, i.e. constant B [Coulomb 1983], [Ren, Razek 1992].

Fs = −∂sw|B=cte s = x, y, z avec w =
∫

D′

∫ b

0
H . dB dv (16.9)

A similar expression can be established using the co-energy “w” at constant current, i.e. con-
stant H.

Fs = −∂sw
′|H=cte s = x, y, z avec w′ =

∫
D′

∫ H

0
B . dH dv (16.10)

Assuming that there are no changes of H or B on the boundary Γ during the move, the
calculation of w or w′ is performed only in domain D′. Given the considerations on the field and
the flux density, the force calculation is obtained using: the derivative of the energy (see expression
16.9) for the vector potential A and the derivative of the co-energy (see expression 16.10) for the
scalar potential Ω [Coulomb 1983].

We can also calculate the torque by differentiation of w or w′ with respect to the angle of
rotation θ. We thus obtain the following relations:

Cz = −∂θw|B=cte Cz = −∂θw
′|H=cte (16.11)

16.2.2 Discretisation
The goal is to obtain the overall value of the force or torque from a solution of the problem by the
finite element method. To do this, it is possible to use a finite differences approach that consists
in evaluating the energy w (see expression 16.9) or co-energy w′ (see expression 16.10) for two
positions s0 and s1 of the region D′. The value of the force is then given by the expressions:

Fs = −w1 − w0

s1 − s0
Fs = −w′

1 − w′
0

s1 − s0
(16.12)

This approach thus requires two solutions to the problem. On the one hand, it introduces
rounding errors on the calculation of forces [Coulomb, Meunier 1984]. For these reasons, we prefer
a method based on the local differentiation of the energy or co-energy. In this case, the calculation
of force or torque is obtained by direct differentiation of the energy functions w or w′ by using a
single resolution by the finite element method. This method gives a general and easy to implement
algorithm. Its introduction into a calculation code is achieved by the derivative of the Jacobian
matrix [Coulomb 1983].

The calculation is performed by a volume integral in 3D or surface integral in 2D. Usually we
choose a layer of elements located in the air and surrounding domain D′. The movement of this
layer results in deformation of the layer elements. The surface nodes are then virtually moved
[Coulomb 1983], [Ren, Razek 1992], [Sadowski 1993]. In the case of rotating machines, such a
layer is placed in the air gap.

16.2.2.1 Local derivative of the magnetic energy

The use of the vector potential A, discretised by the edge elements, implies that a flux can be
kept constant by the flows of A. As a result, the calculation of forces is obtained by the derivative
of the energy. For each element, the magnetic induction is given by:
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be = rotwe ce
a

The magnetic energy is then approached by a finite sum on the Ne elements of the previously
defined layer:

w =
Ne∑
e=1

we = 1
2

Ne∑
e=1

ceT
a Se

a c
e
a avec Se

a =
∫

De

1
µ0

rotweT . rotwedv (16.13)

we is the magnetic energy for a virtually moved element. We note that Se
a is the elemental

stiffness matrix calculated in air. It is recalled that the terms of the stiffness matrix in air Sa and
the source vector Fa are written:

Sa i,j =
∫

D

1
µ

rotwi . rotwj dD i, j = 1, ..., Na (16.14)

Fa j =
∫

D
wj .J0 dD (16.15)

Because the flow values are kept constant during the movement and the magnetic energy of
domain D′ changes, the differentiation is performed only on the terms of matrix Se

a. The force is
thus written as follows:

Fs = 1
2

Ne∑
e=1

ceT
a ∂sS

e
a c

e
a (16.16)

The expression for matrix ∂sS
e
a is more easily obtained by passing from the real element De to

the reference element D̂e (see annex L and M):

∂sS
e
a =

∫
D̂e

1
µ0

rotweT
[(
∂sJT

)
J′T − (∂sJ′) J

]
rotwe dv̂ (16.17)

J is the Jacobian matrix and J′ represents the co-matrix (co-factors matrix) transposed from
matrix J.

16.2.2.2 Local derivative of the magnetic co-energy

For the scalar potential Ω, the force is calculated by the derivative of the co-energy. We can have
a constant current by fixing the potential values. The latter is discretised by nodal elements. In
this case, the magnetic field H is written he = −gradλe Ωe for each element. The co-energy (see
expression 16.10) is thus given by the following relation:

w′ =
Ne∑
e=1

w′e = 1
2

Ne∑
e=1

ΩeT Se
Ω Ωe avec Se

Ω =
∫

De

µ0 gradλeT .gradλedv (16.18)

We note that Se
Ω is the elementary stiffness matrix expressed in air.

It is recalled that the terms of the stiffness matrix in air Sa and the source vector Fa are
written:

Sa i,j =
∫

D

1
µ

rotwi . rotwj dD i, j = 1, ..., Na (16.19)

Fa j =
∫

D
wj .J0 dD (16.20)

During the movement, the potential values Ω are fixed, but the co-energy of domain D′ changes.
As a result, the force is calculated from the derivative of matrix Se

Ω:
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s node i moved node i fixed
∂sxi ∂syi ∂szi ∂sxi ∂syi ∂szi

x 1 0 0 0 0 0
y 0 1 0 0 0 0
z 0 0 1 0 0 0
θ yi −xi 0 0 0 0

Table 16.1: derivatives of the coordinates

Fs = 1
2

Ne∑
e=1

ΩeT ∂sS
e
Ω Ωe (16.21)

Using the same notation as before, we obtain (see annex M):

∂sS
e
Ω =

∫
D̂e

µ0 gradλeT
[(
∂sJT

)
J′T − (∂sJ′) J

]
gradλe dv̂ (16.22)

The matrix expression in brackets:[(
∂sJT

)
J′T − (∂sJ′) J

]
is the same for both relations 16.17 and 16.22. This represents a considerable advantage. A

single algorithm suffices to develop the calculations for both formulations.

16.2.2.3 Derivative of the Jacobian matrix

The calculation of force or torque by the virtual work method is reduced to differentiation of the
Jacobian matrix J. This latter allows moving from the real element, of arbitrary shape, to a
reference element of a unique shape (see annex L). The expression of J is given in annex L, we
repeat it here in order to calculate its derivative. For a tetrahedron, whose nodes are identified by
the Cartesian coordinates ((xi, yi, zi) i = 1, 4), we have the following relation:

J = gradλ̂


x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4

 (16.23)

where λ̂ are the nodal approximation functions defined in the reference system.
These functions are linear, hence their gradient is constant. As a result, the differentiation of

J is performed only on the coordinates of the nodes of the element:

∂sJ = gradλ̂


∂sx1 ∂sy1 ∂sz1
∂sx2 ∂sy2 ∂sz2
∂sx3 ∂sy3 ∂sz3
∂sx4 ∂sy4 ∂sz4

 (16.24)

Table 16.1 summarises the derivative values for the different components of the force along x,
y and z. For calculation of the torque, we take:

s = θ

The calculation of the force thus requires knowledge of the layer elements as well as the virtually
displaced nodes (see Figure 16.3).
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fix nodes

virtually displaced nodes

layer of distorted elements

Figure 16.3: Deformed elements and displaced nodes for a triangle mesh.
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Chapter 17

Calculating local magnetic flux

17.1 Introduction
It may be interesting to calculate a flux more locally across a surface inside the domain. For
formulations using the vector magnetic potential A, the calculation of such a value is not a
problem since it is sufficient to calculate the flow of A on a contour of a surface. However, for
discrete formulations in scalar magnetic potential, since the normal component of the magnetic
induction is not preserved, we cannot define the concept of magnetic flux. However, there are
several methods to determine an image of such a value.

17.2 Presentation of the problem
Below, we consider a contractible surface S supported by the mesh facets (see Figure 17.1).

facet

edge
node

orientation of S

Figure 17.1: Definition of the surface S.

We denote nS
a the number of edges forming the boundary ∂S and nS

f the number of facets of
S. The orientation of S is fixed arbitrarily, and this implicitly orients its contour ∂S (see Figure
17.1).

To simplify the presentation, we consider the magnetostatic case knowing that this method
can be extended to the magnetodynamic case.

17.3 Case of formulation A
In the case of formulation A, the magnetic flux ΦA through the surface S can be directly obtained
by the expression of the magnetic induction BA.

ΦA =
∫

S

BA .n ds (17.1)

with n the normal unit vector to S for which the direction is fixed by the orientation of S.
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As the flux density BA is discretised in the facet element space, its normal component is then
preserved across all mesh facets. Expressing the flux density BA as a function of the potential A
(A ∈ W1) in equation 17.1, the magnetic flux crossing S is obtained by a simpler expression:

ΦA =
∫

S

BA .n ds =
∫

S

rot A .n ds =
∮

∂S

A . d∂s (17.2)

The path direction of ∂S is determined by the orientation chosen for S. Each edge a of nS
a is

associated with an incidence number δa, if the orientations of a and ∂S are the same then δa = 1
otherwise δa = −1. In these conditions, the expression of ΦA according to the flow of A along the
edges is equal to:

ΦA =
nS

a∑
a=1

Aa δa (17.3)

An example is given in Figure 17.2 where the contour of the surface S is composed of 8 edges.

node oriented edge

Figure 17.2: Example of calculation of a local magnetic flux by formulation A.

The flux ΦA through S is thus equal to:

ΦA = −A1 +A2 +A3 +A4 −A5 +A6 −A7 −A8 (17.4)
This conventional method is very advantageous in terms of calculation time and simplicity of

implementation. Only the nodes belonging to ∂S are to be determined (the edges of ∂S are easily
deduced from it) and not the surface S itself.

17.4 Case of formulation Ω
Below, formulation Ω will be assumed to be resolved on the primal mesh. We thus obtain a
magnetic field HΩ that verifies Ampère’s circuital law. On the other hand, the flux density BΩ
obtained through the constitutive relation does not verify the conservation of flux law and does
not have a continuous normal component throughout the domain. To obtain such a field would
require use of the dual mesh where the flux density B̂Ω has conservative flux (see Chapter I of
[Henneron 2004]).

17.4.1 First approach
Since the normal component of BΩ is not preserved, the value of the surface integral of the normal
component of the flux density through a facet f common to two elements e+ and e− is not the
same as the expression of BΩ on e+ and e− (see Figure 17.3).

Two values homogeneous to fluxes Φ+
f and Φ−

f can be calculated:

Φ+
f =

∫
f

B+
Ω .nf df et Φ−

f =
∫

f

B−
Ω .nf df (17.5)

with B+
Ω and B−

Ω the magnetic induction in two elements e+ and e− having the common facet
f and nf the normal vector to f for which the orientation depends on that of S. Two values Φ+

Cl
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Figure 17.3: Example of a facet contained in surface S.

and Φ−
Cl homogeneous to a flux through a surface S are defined as the sum of the two values Φ+

f

and Φ−
f :

Φ+
Cl =

nS
f∑

f=1
Φ+

f et Φ−
Cl =

nS
f∑

f=1
Φ−

f (17.6)

17.4.2 Second approach
The second approach is based on the relation giving the flux through a surface belonging to the
boundary of domain D:

ΦD =
∫

D
BΩ .gradαdD (17.7)

with α defined in section 3.2.

If we consider a surface S inside D but whose boundary ∂S belongs to ΓB . We can use a
relation similar to 17.7. We denote by Ne+ and Ne− the two sets of elements on each side of S
and having at least one node belonging to S (see Figure 17.4). These two sets of elements form
two domains D+ and D−.

Figure 17.4: Example of domains resulting from surface S.

We define a function α+ (α− respectively) zero on D D+ (D D− respectively) and defined as
follows on D+ (D− respectively)

α+ =
∑
n∈S

wn (17.8)

where wn is the nodal function associated with node n.
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In these conditions, two values homogeneous to a flux through the surface S can be calculated
by:

Φ+
D =

∫
D+

BΩ .gradα+ dD+ et Φ−
D =

∫
D−

BΩ .gradα− dD− (17.9)

We show that Φ+
D and Φ−

D are equal because they correspond to fluxes through the dual facets
of the edges on each side of S and having a single node on S (see Figure 17.5).

Figure 17.5: Flux through the dual facets.

We recall that this method is only applicable with surfaces S supported by boundary conditions
of type B .n = 0. Next, we will propose an extension to this for surfaces that do not rely on ΓB .

17.4.3 Third approach
We define an exploratory coil using the boundary ∂S formed by the edges. The magnetic field
produced only by the coil traversed by a current of 1 A in a domain D assumed to be of uniform
permeability µ0 is denoted Ksp.

This field is calculated by the Biot-Savart law at any point M of the domain (see Figure 17.5)
by:

Ksp (M) = 1
4π

∫
∂S

dl × ≊
∥r∥2 (17.10)

with u the unit vector of r and dl an elemental movement along the edges of ∂S.

node edge

Figure 17.6: Calculation of Ksp at a point M.

The magnetic flux Φsp is then calculated by:

Φsp =
∫

D
BΩ .Ksp dD (17.11)

Vector Ksp cannot be projected into any of the discrete spaces shown above. The numerical
calculation of expression 17.11 must be performed as carefully as possible to be precise. The Gauss
integration method was used for this calculation, but the selected integration points should not
be placed on the boundary of the surface (vector Ksp is not defined on the surface) but inside the
elements. The numerical technique used to determine Ksp in one Gauss point is detailed in annex
D.



Chapter 18

Calculation of iron losses

In the current context of developing devices that meet sustainable development and energy effi-
ciency criteria, research into the need to save energy, the efficient use of materials in electrical de-
vices and the development of new materials with superior properties are of paramount importance.
Recent advances in the electrotechnical industry are due, in large part, to the improvement of the
technology for the manufacture of magnetic materials. Rotating and static electrical machines,
of all sizes, are usually constructed with soft magnetic materials (sheet). For their appropriate
design, it is important to have a good knowledge of the properties of these magnetic sheets.

The magnetic material represents the heart of the operation of an electrical machine and the
properties of the material, such as the B(H) magnetic constitutive relation and the iron losses,
influence the performance and efficiency of the machine.

In this chapter, we will first introduce the definitions of the various magnetic values that will
allow us to explain the physics of a magnetic material. Secondly, the mechanisms behind iron
losses will be described using the Bertotti theory. Next, the main difficulties in estimating these
iron losses in an electrical machine will be presented. In a final section, we will address the main
models used to estimate these losses and present the approach we have chosen for this work.

18.1 Magnetic materials
18.1.1 Magnetic values
A sample of matter is basically described, from the point of view of magnetic properties, as a set of
magnetic moments, resulting from the movement of electrons. Conventionally, electrons orbiting
the atomic nucleus have a magnetic moment also called the orbital moment:

m = − (e/2me) L
where:

• e is the charge;

• me is the mass of the electron;

• L is the angular moment.

In addition to this orbital magnetic moment, electrons have an intrinsic magnetic moment
called spin magnetic moment. We thus define the magnetic moment of an atom as the vector sum
of those two moments.

At the macro scale, a volume element of a magnetic material is a set of magnetic moments and
we can define the magnetisation M [A/m] of the material such that:

249
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M = ∂M
∂v

(18.1)

where:

• M is the sum of the magnetic moments;

• ∂v is the volume element considered.

The general relation between magnetic induction B [T], magnetic field H [A/m] and magneti-
sation M is written as follows:

B = µ0 (H + M) (18.2)

where:

• µ0 = 4π 10−7 [H/m] is the magnetic permeability of a vacuum;

In a vacuum, the magnetisation M being zero, the relation B = µ0 H allows us to consider
the flux density and the magnetic field as equivalent quantities, because they are simply linked
by the proportionality constant µ0. In the presence of magnetic material, the contribution µ0 M
reflects the response of the material to external solicitation. This contribution is called magnetic
polarisation J, a quantity with the same unit as B [T] and the same properties as magnetisation
M. Equation 18.2 is then conventionally written as follows:

B = µ0 H + J (18.3)

The magnetic constitutive relation can also be expressed as:

B = µ0 µrH et M = χH (18.4)

where:

• µr is the relative permeability

• χ is the magnetic susceptibility.

These parameters are linked by the following equation:

µr = 1 + χ (18.5)

Based on this general representation of magnetic behaviour, it is possible to describe the
behaviour of the three major categories of magnetic materials:

• paramagnetic materials;

• diamagnetic materials;

• ferromagnetic materials.

Below, we will briefly explain the magnetic properties of each category of material.
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18.1.2 Classification of magnetic materials
18.1.2.1 Diamagnetism

Diamagnetism is reflected in the appearance within the material of a magnetic field opposed to
the applied field. Its origin is the modification of the orbital movement of the electrons around the
atomic nucleus following the application of an external magnetic field. As a result, diamagnetic
magnetisation is present in all materials, but its contribution to the total magnetisation remains
very small compared with other types of magnetisation.

Among the diamagnetic materials (which have only diamagnetic magnetisation) are Cu, Au,
Ag, Zn, Pb, etc. These materials thus have a negative magnetic susceptibility, independent of
temperature, in the order of 10−5. As a result, the constitutive relation of this type of material
can be assimilated to that in a vacuum in the study of electrical machines.

18.1.2.2 Paramagnetism

From the microscopic point of view, paramagnetism is linked to the existence of a permanent
magnetic moment that can be carried by atoms or molecules. In the absence of an external
magnetic field, the magnetic moments are randomly orientated due to thermal agitation, so the
material does not show spontaneous magnetisation. Paramagnetic materials (e.g. Al, Cr, Mn, Na)
nevertheless have a low but positive magnetic susceptibility in the order of 10−3 to 10−5.

The constitutive relation of these materials can thus be considered as linear and close to that
in a vacuum in electrotechnical fields of application.

18.1.2.3 Ferromagnetism

In the case of ferromagnetism, at the microscopic scale, the magnetic moments of spin show strong
coupling. Thus, at the scale of a Weiss domain (defined below), there is magnetisation even in
the absence of an external field, the magnetisation being qualified as spontaneous. This is due to
the fact that atomic moments tend to align spontaneously and parallel to each other, forming an
ordering that can be compared to the geometric ordering characteristic of the solid state.

It should be recalled that the theory of paramagnetism considers atoms to be independent of
each other, which is not the case for ferromagnetism. There is an exchange energy between the
magnetic moments carried by the atoms which tend, by a collective effect, to align in the same
direction. The exchange energy may be written, taking into account the magnetic moments Si

and Sj the two neighbouring atoms, in the following form:

Wij = −2 Jij Si Sj (18.6)

In this expression, proposed by Heisenberg, Jij is the exchange integral. The value of this
coupling factor favours the appearance of a ferromagnetic order if Jij > 0 or an antiferromagnetic
order if Jij < 0. In the case of a ferromagnetic material, the magnetisation tends to orient along
the preferred directions (easy axis of magnetisation) determined by the crystal structure or by
the shape of the sample. To change the direction of a magnetic moment, we can either apply a
magnetic field or provide energy by raising the temperature. It should be noted that increasing the
temperature above a threshold temperature, called the Curie temperature, leads to a reversible
collapse of the spontaneous magnetisation making the system paramagnetic.

Ferromagnetic materials (e.g. Fe, Co, Ni and their alloys) show high susceptibility in the order
of 103 and are the main materials used in electrotechnical energy conversion devices. Ferromag-
netic materials can be subdivided into two groups: soft materials and hard materials (permanent
magnets). Soft magnetic materials can be easily magnetised with weak magnetic fields; they are
used in electrical machines to focus and channel the magnetic flux.
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At industrial frequencies, FeSi sheet of 0.35 to 0.65 mm thickness is generally used and for
frequencies above 10 kHz, amorphous materials are used which have saturation flux density, thick-
ness and losses that are lower than for conventional sheet. Hard magnetic materials (permanent
magnets) are used as a source of magnetic field in electrical machines.

Here, we are only interested in soft ferromagnetic materials.

18.1.3 Configuration in magnetic domains
The first modern theory of ferromagnetism, which remains valid today, was proposed by Pierre
Weiss in 1906-1907 [Weiss 1907], [Brissoneau 1997] and the first experimental work was conducted
in the 1930s. On a macro scale, the spontaneous magnetisation observed on a microscopic scale
disappears. P. Weiss’s theory explains the existence of a demagnetised state and states that a
ferromagnetic material is subdivided into several domains called Weiss domains inside which the
magnetisation is uniform and aligned in the same direction for each domain but different from
one domain to another. These domains are separated by walls (Bloch walls) of small thickness
compared with the size of the domain, from a few hundred to a few thousand Angström. In these
walls, the orientation of the magnetisation varies rapidly from one direction in one domain to
another in the neighbouring domain.

18.1.3.1 Weiss domains

In section 18.1.2.3 we introduced the concept of exchange energy between the magnetic moments
of the neighbouring atoms which, despite the thermal agitation, allows the magnetic moments
to align. This implies that the overall moment of the system would be the saturation moment.
However, there are two other types of energy that oppose the exchange energy: magnetostatic
energy and magnetocrystalline anisotropy energy. It is the appearance of Weiss domains in the
ferromagnetic body that effectively allows minimisation of the sum of the three types of magnetic
energy.

18.1.3.1.1 Anisotropy energy
In a crystalline structure, there are easy axes of magnetisation along which the energy required

to magnetise the material is less than in other directions. For example, for a monocrystalline
sample, if the excitation field is applied along the easy axis of magnetisation, the polarisation J
reaches saturation almost instantly.

Easy magnetization 
axis

Applied field 
axis

Applied field 
axis

Applied field 
axis

Easy magnetization 
axis

Easy magnetization 
axis

Figure 18.1: Polarisation behaviour J when applying a field H.

If, on the other hand, an excitation field is applied on an axis other than the easy axis of
magnetisation, the polarisation J does not behave as in the previous case. As shown in Figure
18.1a, if a field is applied in a direction outside the easy axis of magnetisation, the materials
initially polarise along the nearest easy axis of magnetisation. In this case, depending on the axis
of application of the magnetic field, the magnetisation contribution corresponds to the projection
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of the polarisation on this same axis. If the amplitude of the magnetic field continues to grow,
there is a rotation of the polarisation J and a slow increase of the projection on the axis of
application of the field that approaches the saturation level (18.1b). The field needed to change
the polarisation direction is called the “anisotropy field”. Then, if the magnetic field continues to
increase, the polarisation will align with the magnetic field and the material will be saturated in
the same direction as the excitation field (18.1c). As a result, the volume energy required to reach
saturation in a direction other than the easy axis of magnetisation will be higher.

18.1.3.1.2 Magnetostatic energy
This energy results from the magnetic interactions between the magnetic moments, since each

magnetic moment is subject to a local field created by all other magnetic moments. P. Brissonneau
[Brissoneau 1997] suggested an expression for magnetostatic energy by representing magnetised
matter as a set of magnetic moments in a vacuum.

Wm = 1
2
y

V

M .H′ dv (18.7)

where:

• V is the system volume;

• H′ is the local field.

In the absence of external field, H′ is due to the presence of the demagnetising field created
by the moments of the structure. These are the result of the appearance of fictitious magnetic
masses within the material due to the local divergence of the magnetisation.

Figure 18.2: System with uniform magnetisation a); Fractional structure in two domains with
anti-parallel magnetisations b).

In Figure 18.2a, the presence of the fictitious magnetic poles gives rise to a magnetic field
which, according to equation 18.7, will introduce significant magnetostatic energy. However, as
the magnetic moments are aligned in one direction, the easy axis of magnetisation, exchange
energy and anisotropy energy are minimised. In the second configuration (Figure 18.2b), the
structure is divided into two domains with anti-parallel magnetic moments. The magnetic field
thus re-loops in the ends of the domains, thus limiting the magnetic field in comparison to the
first configuration. As a result, this configuration minimises the magnetostatic energy but the
exchange energy increases because there are moments anti-parallel to the interface between the
domains. In addition, the contribution of anisotropy energy favours the orientation of magnetic
moments along a preferred direction of the crystal to minimise the overall energy of the system.

Thus, overall, the total energy of the material (sum of the three contributions mentioned above)
is minimised by the division of the material into Weiss domains. The size of these domains varies
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depending on the material and the metallurgical quality. The order of magnitude of the domains
can range from a few tens of nanometers to a few hundred microns.

18.1.3.2 Bloch walls

As mentioned above, a ferromagnetic material is subdivided into several domains. This struc-
ture shows transition zones (Bloch walls) between neighbouring domains where the orientation of
magnetic moments changes from one domain to the neighbouring domain.

Wall thickness

Figure 18.3: Rotation of magnetic moments between two domains at 180 ˚.

As shown in the figure above, the change of orientation of the magnetic moments is not sudden
and takes place gradually in the thickness of the wall. Thus, the exchange energy needed for a
gradual transition is less than for a sudden transition [Brissoneau 1997]. The change in exchange
energy is thus inversely proportional to the size of the wall.

However, if we think in terms of anisotropy energy, a large wall thickness implies an increase in
anisotropy energy because there are several magnetic moments aligned in unfavourable directions.
In fact, the optimal width of this wall is obtained for the configuration of minimum overall energy.

18.1.4 Magnetisation process - First magnetisation curve
If a ferromagnetic material is demagnetised, the magnetisations associated with Weiss domains
show random orientations, resulting in a zero total magnetisation. Note that, in practice, this
demagnetised state can be obtained by natural relaxation of the material or by application of an
alternative field of initially high amplitude (to saturate the material) then becoming weaker until
the excitation is cancelled out. If an increasing magnetic field is then applied to the material, the
magnetic moments will tend to align with the direction of the applied field. This means that the
Bloch walls move within the material.

However, the movement of the Bloch walls is hindered by the imperfections present within the
material. These imperfections are due in particular to non-magnetic and ferromagnetic impurities
as well as to dislocation stresses, grain boundaries and metallurgical treatments. These defects
have the direct consequence, as will be seen later, of a reduction in permeability and an increase
in magnetic losses.

Thus, depending on the intensity of the magnetic field applied, the magnetisation mechanism
can be described, as a first approach, as the succession of three main mechanisms (Figure 18.4):

• Region A: this is the area of the fields where the movement of the walls can be considered
as an elastic deformation. Conceptually, because they are not rigid, they can deform on
the anchor sites. Thus, if the increase in the external field is not sufficient to dislodge the
wall, it will deform without causing a sudden change in the magnetisation. This process is
reversible: if the external field is removed, the system returns to its initial state.
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Figure 18.4: First magnetisation curve.

• Region B: in this region, the external magnetic field intensity reaches a level allowing the
walls to break free of the anchor sites. Hence, domains for which the initial magnetisation
was in the same direction, or close to the external magnetic field direction, will expand in
volume at the expense of others.

• Region C: To reach this region, the intensity of the magnetic field must be very high. Mag-
netisation then begins to saturate and the Bloch walls disappear. We basically have a
structure with a single magnetic domain where the magnetic moments start to align in the
same direction as the applied magnetic field. This process of rotation of magnetic moments
is reversible.

18.2 Magnetic losses
When a ferromagnetic material is subjected to a variable field over time, it is the site of energy
dissipation, more commonly known as magnetic losses or iron losses. According to the approach
proposed by Bertotti, [Bertotti 1988] these losses can be broken down into three contributions:

• Losses by hysteresis

• Induced current losses (or conventional losses)

• Anomalous losses.

Remark 18.2.1 In reality, these three components are due to the induced currents that develop
in the material, but at different scales (microscopic and macroscopic).

Below, we briefly present these three contributions to the total losses. We take the case of a
ferromagnetic sheet whose length and width are much greater than its thickness, and in conditions
of excitation dynamics (frequency) such that the thickness of the skin remains compared with the
thickness of the sheet. The magnetic field can then be considered, at first approach, uniform in
the thickness of the sheet. In addition, we will now work with the usual magnetic induction value
B linked to the magnetisation M by equation 18.2.
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18.2.1 Hysteresis losses
Hysteresis losses are associated with the movement of the Bloch walls (see section 18.1.3), which
is mostly irreversible and causes the magnetic induction B to lag behind the excitation field H.
This delay is observed at the macro scale in the form of a material-specific hysteresis cycle.

In addition, from thermodynamic considerations [Bertotti 1998] it can be shown that the area
described by this cycle corresponds to the volume energy dissipated over a period. Thus, as
mentioned above, the movement of the walls is not continuous, but by sudden jumps from one
anchor site to another (Barkhausen jumps, see Figure 18.5)

Induced currents

Speed

Initial wall position

Magnetisation

Magnetisation

Excitation 
field

Figure 18.5: Microscopic induced currents when moving a wall by 180˚.

These jumps are associated with local flux variations, giving rise to microscopic induced cur-
rents in the Bloch wall region.

(a) (b)

Figure 18.6: a) Major centred hysteresis cycle b) Major centred hysteresis cycle with a minor cycle

In addition, depending on the waveform of the magnetic induction, hysteresis cycles may
have minor, non-centred cycles (Figure 18.6). These minor cycles induce additional losses also
determined by their area. Generally, the energy supplied to the material to cover a complete cycle
is written:

W =
∮

H . dB
[
J/m3

]
(18.8)

This energy is converted to heat during the magnetisation process and represents the volume
losses by hysteresis in the static case (low frequency or dynamic).

Ph = f

∮
H . dB

[
W/m3

]
(18.9)

18.2.2 Induced current losses
In the dynamic state, in addition to steady state losses, losses due to macroscopic induced currents,
linked to the conductivity σ of the material, become non-negligible. In Figure 18.7 we can see the
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induced currents that develop in the thickness of the sheet.
In this figure, the magnetic field and flux density are orientated along axis (Oz); the electric

field E and the induced current density J are directed along axis (Ox). We assume that the
excitation field dynamics H are weak enough to have a uniform field in the sheet and thus neglect
the skin effect.

Excitation 
field

Induced current lines

Figure 18.7: Development of induced currents in the thickness of a sheet.

In the case of a sheet of dimensions, in the plane, that are infinite in relation to its thickness,
the expression of the volume losses by induced currents is given by [Bertotti 1998]:

pci = 1
d

∫ d

0

j2 (y, t)
σ

dy = σ d2

12

(
dB

dt

)2
(18.10)

The mean value over an excitation field period is thus expressed as follows:

Pci = σ d2

12
1
T

∫ T

0

(
dB

dt

)2
dt

[
W/m3

]
(18.11)

where:

• T is the time period of the magnetic induction B;

• d is the thickness of the sheet.

In the sinusoidal case, the above expression can be written as follows:

Pci = 2π2
(
σ d2

12

)
f2 B2

m

[
W/m3

]
(18.12)

We observe that the induced current losses are proportional to the square of the thickness of
the sheet d and to the square of the frequency and induction field B. These losses also change
linearly with the conductivity of the material.

From the point of view of the magnetisation cycle, in the dynamic state, the induced currents
produce a swelling of the B(H) cycle as shown in Figure 18.8. This is referred to as a loss cycle,
in particular because the cycle includes static losses and macroscopic induced current losses.

In the case of electrical machines, these losses can be non-negligible for several reasons.

• Today, machines are largely powered by static converters, which introduce time harmonics
of currents that translate directly into magnetic field harmonics.

• The layout of the coils introduces space harmonics. The magnetomotive force of the air gap
is thus not sinusoidal, hence the space harmonics of the magnetic field.

• The stator and/or rotor notches introduce a variation in the air gap reluctivity that also
induces changes in the magnetic field.
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Figure 18.8: Swelling of the B(H) magnetisation cycle in the dynamic state.

• Finally, there are additional end losses introduced by the winding overhang of stators and
sometimes rotors, which create additional induced current losses in the magnetic materials
located at the ends of the electrical machine.

18.2.3 Anomalous losses

These losses are caused by the movement of the Bloch walls in the dynamic state. These movements
are not independent and interact, leading to the appearance of localised induced currents in the
vicinity of the walls. This phenomenon can be considered uniform over the whole material and
depends strongly on the frequency of the excitation field [Bertotti 1998].

In 1990, Fiorillo and Novikov [Fiorillo, Novikov 1990], based on Bertotti’s theory, showed that
the average value of anomalous losses, in the case of laminated material and over an electrical
period, can be expressed as follows:

Pexc =
√
σGV0 S

1
T

∫ T

0
|dB
dt

|1,5 dt
[
W/m3

]
(18.13)

where:

• G is the coefficient of friction between the magnetic domains;

• V0 is a parameter that characterises the statistical distribution of the local coercive field;

• S is the transverse surface of the laminated material.

If the magnetic induction is sinusoidal, the expression for the anomalous losses becomes:

Pexc = 8, 764
√
σGV0 S f

1,5 B1,5
m

[
W/m3

]
(18.14)

These losses are influenced by the conductivity of the material, the intensity and frequency of
excitation, or the level of impurities present in the material.
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18.2.4 Rotational field losses
In electrotechnical applications, the magnetic field is not always unidirectional and orientated
according to the easy axis of magnetisation or the transverse axis. In the yoke of electrical
machines, for example, or in the T-joints of the magnetic circuits of three-phase transformers,
the combination of fields associated with the different phases leads to the appearance of a locally
rotating flux density. In general, the flux density module describes a more or less ellipsoidal, even
circular shape. Thus, if we consider a circular flux density regime of amplitude B and constant
angular velocity ω, the flux density can be broken down into two axes in the sheet plane x and y
in the form: {

Bx (t) = B cosωt
By (t) = B sinωt (18.15)

The rotational losses over a cycle can then be expressed by the following relation [Moses 1992]:

Prot = 1
T

∫ T

0

dθ

dt
|H| . |B| sinαdt (18.16)

where:

• α is the angle between H and B;

• θ is the angle between B and a given direction.

In practice, it can be seen that the iron losses in the rotating field and the uni-directional field
evolve differently. The difference is explained by the complex behaviour during the magnetisation
mechanism involved. In the case of a uni-directional field, the flux density undergoes continuous
variation, during which the Bloch walls and the magnetic domains are continuously modified. In
the case of a circular field, however, the amplitude of the flux density remains constant and only
the projections of the field vary in amplitude.

Figure 18.9: Magnetic losses 1) in a uni-directional field and 2) in a rotating field.

For weak fields, rotational field losses, for FeSi-type sheet with non-orientated grain (N.O.),
can have values double those in a uni-directional field [Moses 1992], [Enokizono et al 1990]. In
a rotating field, these losses can be approximated by the sum of the uni-directional field losses
along the rolling direction and along the transverse direction. Conversely, for fields of very high
amplitude, rotational field losses decrease rapidly as a function of the amplitude of B while uni-
directional field losses continue to increase as a function of B (see Figure 18.9). This is generally
observed for flux density values close to saturation.

18.3 Description of the iron loss calculation procedure
Since the calculation of iron losses and the modelling of soft materials are highly interdependent,
the calculation of losses can be considered in two ways: either by modelling the B(H) magnetic
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constitutive relation by a hysteresis cycle, in this case the losses are calculated directly in the code,
or by neglecting the effect of hysteresis on the flux distribution in the device and subsequently
calculating the losses from theoretical or experimental formulas. In code_Carmel, the second
method of calculating losses has been chosen.

The procedure for estimating iron losses in post-processing is described in a simplified manner
in Figure 18.10 and detailed in the following sections. The code_Carmel calculation code has
two versions. A first version is dedicated to permanent states. The calculations are performed
in complex mode, harmonic by harmonic. A second version, called the time-based version, where
calculations are carried out step by step over time. In the latter, physical values can vary freely
over time.

The loss calculation procedure has been implemented in both versions. The approach used in
the time-based version of the code is detailed below.

code_Carmel

Backup of B(t) 
in each element

Loss model in 
postprocessing

Iron losses

Figure 18.10: Simplified diagram of the iron loss calculation procedure.

As a first step, resolution of the electromagnetic problem is performed, with code_Carmel,
using one of the two formulations. For a magnetostatic problem, the calculation can be performed
with the vector potential formulation A or with the scalar potential formulation Ω. In the case
of a magnetodynamic problem, one of the two mixed formulations A − φ or T − Ω is used.

Secondly, by means of a procedure that we have implemented in post-processing, we save, over
a period of time, the waveform of the flux density B (t) in each element of the media subject to iron
loss. The magnetic induction, although predominantly pulsing in electrotechnical devices, may
exhibit local rotating-field behaviour as a result of the local combination of fluxes from different
phases. More generally, this behaviour can be described as ellipsoidal and induces additional losses
that need to be taken into account. As a result, when calculating the iron losses, it is necessary to
consider the two spatial components of the flux density in the plane of the sheet [Bastos, Sadowski
2003]. Hence, the waveforms of the flux density are stored in two files that correspond to the
decomposition of field B along the two spatial axes (in the plane of the sheets).

Lastly, a final procedure was coded, in order to make use of the two files created at the end of
the electromagnetic calculation. First, the procedure determines, for each element, the direction
in which the flux density module is maximum (called the “Large axis”) and locally associates it
with a new coordinate system as shown in Figure 18.11. Thus, at each time step, vector B is
decomposed in order to extract the time waveforms along the large axis and the small axis.

Next, it is possible to choose from several subroutines of the iron loss calculations, implemented
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Minor axis

Major axisMajor axis

Minor axis

Figure 18.11: Flux density locations a) alternating b) rotational.

subsequently, which provide the density of iron losses in [W/m3] for each element and along the
two axes. Finally, the loss density of each element is multiplied by the volume (Vi) of the element
under consideration and then summed with losses of all other elements of the system to result in
the total iron losses. The various subroutines implemented are introduced below.

The first subroutine calculates iron losses, expressed in W , based on the peak value of the flux
density Bm (model M1):

Ptot =
n∑

i=1

[
kh f

(
Bα

⊥,m +Bα
//,m

)
+kci f

2
(
B2

⊥,m +B2
//,m

)
+ kexc f

1,5
(
B2

⊥,m +B2
//,m

) 3
4
]
Vi (18.17)

With:

• kh, kci and kexc the iron loss coefficients;

• f the frequency;

• n the total number of elements.

The second subroutine calculates iron losses from the equation below (model M2);

Ptot =
n∑

i=1

{
kh f

[(
∆B⊥

2

)α

+
(∆B//

2

)α]

+ kci

2π2
1
T
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0
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dB⊥

dt

)2
+
(
dB//
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]
dt
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1
T
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0
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dB⊥
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)2
+
(
dB//

dt

)2
] 3

4

dt

 Vi (18.18)

The third subroutine calculates the quasistatic term based on the peak flux density value
of each harmonic k obtained by the Fourier series decomposition and the dynamic components
according to the time derivative of the flux density (model M3).
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Finally, the last two subroutines calculate the static component of the losses using a hysteresis
model (Jiles-Atherton or Preisach) and the dynamic components according to the time derivative
of the flux density (models M4 and M5).

Ptot = Modèle d’hystéréris
statique

+
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 Vi (18.20)

For all embedded approaches, we consider the contributions given by the two spatial compo-
nents to be independent of each other and the losses are given by the sum of the two contributions.
Hereafter, for the sake of simplicity, we will refer to the different iron loss models by their notation
(models M1, M2, M3, M4 and M5).

In addition to the calculation of iron losses, the program developed also provides us with the
density map of iron losses and tracking of the locations in the elements wanted.

In the methodology presented, data on the values of the magnetic induction in the elements
of the magnetic media, as a function of time, are stored as files. Storing the magnetic induction
B(t) in this way can cause a problem with file sizes, which can be significant depending on the
number of mesh elements. On the other hand, the major advantage lies in the fact that, once
the electromagnetic problem has been solved, which is often a time-consuming step, the files are
saved and can be manipulated to calculate the losses using either of the iron loss approaches
with, possibly, different values for the coefficients. Because iron loss calculation procedures do not
require significant execution time, this may be the best option.



Chapter 19

Exploratory points

This paragraph describes how to locate a point, e.g., forming part of a section line, in a finite
element and the conversion of its coordinates in the reference element system. We illustrate this
problem below on two test cases, using the solution of reference calculated using the time-based
version of code_Carmel1. As it stands, tetrahedron, prism, and hexahedron elements of the first
order are possible. We are having trouble in obtaining the coordinates of the point in the reference
hexahedron, independent of the re-orientation of the elements practised in the code.

19.1 Search method

In code_Carmel, when exploratory points are defined, we first seek the elements containing each
of these points, by checking, for all “orientated” faces of the element if the point is on the inside of
the element (see annex I). This operation is carried out from the original mesh, because we know
the order of the nodes provided for the element.

After re-orienting the elements, i.e., the node indices, comes the step of finding the coordinates
of the point in the reference element. These coordinates will be used directly for interpolation of
the field at the appropriate location.

The transformation of geometric coordinates, in a finite element, to change the coordinates of a
point in the reference element to the coordinates of this point in real space, is very well defined in
the literature. It uses nodal interpolation functions and poses no practical difficulties because
the transformation is analytical [Dhatt, Thouzot 1984, Sec 1.5]. The reverse transformation to
change the coordinates from real space to coordinates in the reference element, is not obvious for
non-tetrahedral elements, because this transformation is not linear and this several notations for
this transformation are possible. These notations are equivalent on paper but do not give the same
results in practice. Although this is not mentioned in the literature, we show, case by case, that it
is possible to use a method based on the Jacobian matrix of the geometric transformation2.
This matrix is natively available in a finite element code and this method works in practice3. An
equivalent method uses barycentric coordinates [Dhatt, Thouzot 1984, Sec. 2.5.1]. The latter
is used in practice in the harmonic version of Code_Carmel3D [Bereux 2008]. After a discussion
with Patrick Dular (University of Liège), this second method does not work well with elements of
order 2 and higher.

1code_Carmel (http://code-carmel.univ-lille1.fr) is co-developed by the LAMEL laboratory resulting from a
partnership between the L2EP laboratory (http://l2ep.univ-lille1.fr) and EDF R&D (http://www.edf.fr). The
version used to calculate section lines is in development.

2The use of the Jacobian matrix was suggested by Thomas Henneron and Yvonnick le Ménach (L2EP).
3It gives good results for an extruded mesh.
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19.1.1 Nodal function method
Here we take up the results and definitions of [Dhatt, Thouzot 1984]. We know that code_Carmel
uses finite elements isoparamétriques. In these conditions, we wish to express the coordinates of
a point, known in real space x = (x, y, z), in the system of the reference element ξ = (ξ, η, ζ).
This geometric transformation from reference element to real element calls on n interpolation
functions Ni(ξ, η, ζ) where i ∈ [1, n] and n is the number of nodes in the element. The geometric
transformation it thus written:

x =
n∑

i=1
Ni(ξ, η, ζ)xi (19.1)

where xi represents the coordinates of node i in real space.

A more detailed notation leads to:

x =
n∑

i=1
Ni(ξ, η, ζ)xi

y =
n∑

i=1
Ni(ξ, η, ζ)yi

z =
n∑

i=1
Ni(ξ, η, ζ)zi

For first order elements, the interpolation functions Ni involve linear, bi-linear or tri-linear poly-
nomials in ξ, η and ζ.

Expression (19.1) is difficult to reverse to express ξ⃗ = (ξ, η, ζ) from x⃗ = (x, y, z), as we wish.
We propose a reformulation below, based on on the Jacobian matrix, which allows us to find
ξ⃗ = (ξ, η, ζ).

19.1.2 Jacobian matrix method
The Jacobian matrix, denoted J in [Dhatt, Thouzot 1984], allows the deformation of the reference
element to be expressed as a real element, i.e. its expansion and rotation with respect to a
coordinate system linked to the element. This is the matrix 3 × 3 defined by:

J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 (19.2)

In order to express the coordinates in the real coordinate system of the domain under study, this
transformation must be completed by translation into the real coordinate system, of the reference
element, i.e. the translation of centre O reference frame, i.e., the real coordinates (x0, y0, z0) of
the centre of the reference frame. The geometric transformation (19.1) is then written, in matrix
form:  x

y
z

 =

 x0
y0
z0

+ tJ

 ξ
η
ζ

 (19.3)

where tJ is the transposed Jacobian matrix.

It suffices to invert (19.3) to obtain the coordinates (ξ, η, ζ) of the point sought in the reference
element. The Jacobian matrix J generally depends on these coordinates (ξ, η, ζ). We thus denote
it J(ξ) and the inverted equation (19.3) is written:
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 ξ
η
ζ

 = tJ−1(ξ)


 x

y
z

−

 x0
y0
z0

 (19.4)

In the case where the Jacobian matrix depends on the coordinates (ξ, η, ζ), equation (19.4) to
be solved is non-linear. An iterative resolution method is thus required. The substitution method
works very well in practice on first order elements4. During the iteration, the first calculation of
the Jacobian matrix can use any point, e.g. the centre of the reference element. Then this point
will be updated with the result of the previous iteration.

This Jacobian matrix is generally constructed using interpolation functions Ni of the reference
element (see equation 19.1). More precisely by the matrix product of the transposed gradient of
the set of Ni by the matrix made up of the real coordinates of the n nodes of the element:

J =


∂N1
∂ξ

∂N2
∂ξ · · · ∂Nn

∂ξ
∂N1
∂η

∂N2
∂η · · · ∂Nn

∂η
∂N1
∂ζ

∂N2
∂ζ · · · ∂Nn

∂ζ

×


x1 y1 z1
x2 y2 z2
...

...
...

xn yn zn

 (19.5)

where (x1, y1, z1) and (xn, yn, zn) are the coordinates of the first and last nodes of the element,
respectively.

Note that it is not necessary to use the centre O of the reference frame in (19.4). Tests show
that it is possible to use any nodes of the element, or a linear combination of these nodes such
as the centre of the element. This result has not been established analytically. For any point
P meeting this criterion, for which the coordinates are (xP , yP , zP ) and (ξP , ηP , ζP ) in the real
coordinate system and the reference element coordinate system, respectively, equation (19.4) can
be written again:  ξ

η
ζ

 =

 ξP

ηP

ζP

+ tJ−1(ξ)


 x

y
z

−

 xP

yP

zP

 (19.6)

The previous remark makes sense in practice, because it takes more time to calculate the centre
of the item rather than use a known point, e.g., the first node5.

This method is easy to use because this Jacobian matrix J is defined in any finite element
code using the reference element. It only requires, whatever the type of element, 3 × 3 matrix
inversion, which can be done analytically, i.e., without requiring the use of external libraries such
as LAPACK.

We will now show, on a case-by-case basis, under what conditions this method is equivalent or
otherwise to the nodal function method.

It is very important to note that this localisation must be performed after orientation of
the elements.

19.1.3 Barycentric coordinate method
This method is based on the principle of conservation of the barycentric coordinates of any point
in an element. These coordinates are the same in the reference element coordinate system and
that specific to the real element.

4On Rubinacci’s cube with prisms or hexahedra, the convergence is ensured after a maximum of 2 steps.
5It is the first node that is used in code_Carmel
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Any point in an element can be uniquely defined by its barycentric coordinates6 λi. There are
as many as there are nodes n, but only 3 of them are independent, of course. Each barycentric
coordinate is defined by the relative volume of the tetrahedron defined by the point sought and 3
of the nodes of the element, e.g., λ1 = V1/V where V1 is the volume of the tetrahedron defined by
the point and nodes 2, 3 and 4 of the element and V is the volume of the element [Dhatt, Thouzot
1984, Sec. 2.5]. The sum of these barycentric coordinates is 1 because the volume of the element
is the sum of the n volumes of the tetrahedra concerned by the point [Dhatt, Thouzot 1984, Sec.
2.5]. Hence a first dependency between the barycentric coordinates.

The calculation, which we will only detail by example, consists first in finding the barycentric
coordinates from the real coordinates (x, y, z) of the point. By inverting a matrix n×n. This matrix
can depend on (x, y, z) and find the barycentric coordinates then become a non-linear problem.
The coordinates (ξ, η, ζ) of the point sought are then obtained by a matrix-vector product of a
matrix n× n and the vector formed by the barycentric coordinates.

This method is implemented in Code_Carmel3D and code_spectral, by N. Béreux (EDF R&D)
for tetrahedra and D. Laval (EDF R&D) for the other elements7.

19.2 Tetrahedra

Figure 19.1 shows the reference tetrahedron with 4 nodes, of coordinates (0,0,0), (1,0,0), (0,1,0),
and (0,0,1) in the numbering order 1, 2, 3, and 4 of the nodes [Dhatt, Thouzot 1984, Sec. 2.5].
Any point in the reference tetrahedron must satisfy the inequalities: ξ ≥ 0, η ≥ 0, ζ ≥ 0 and
1−ξ−η−ζ ≥ 0. This definition is the same in code_Carmel, Code_Carmel3D and code_Carmel
spectral.

ξ

η

ζ

1:(0, 0, 0)

2:(1, 0, 0)

3:(0, 1, 0)

4:(0, 0, 1)

ξ

η

ζ

1:(0, 0, 0)

2:(1, 0, 0)

3:(0, 1, 0)

4:(0, 0, 1)

ξ

η

ζ

1:(0, 0, 0)

2:(1, 0, 0)

3:(0, 1, 0)

4:(0, 0, 1)

ξ

η

ζ

1:(0, 0, 0)

2:(1, 0, 0)

3:(0, 1, 0)

4:(0, 0, 1)

Figure 19.1: Reference tetrahedron.

6These barycentric coordinates are denoted Li in [Dhatt, Thouzot 1984] and λi in [Bereux 2008]. We will use
the latter notation in the rest of the text.

7Only the implementation for the prisms works correctly, albeit after correction of a bug identified on the
code-carmel website.
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19.2.1 Nodal function method
The 4 interpolation functions are: N1(ξ, η, ζ) = 1 − ξ − η − ζ, N2(ξ, η, ζ) = ξ, N3(ξ, η, ζ) = η and
N4(ξ, η, ζ) = ζ [Dhatt, Thouzot 1984, Sec. 2.5.2]. The relation (19.1) it thus written:

x = N1x1 +N2x2 +N3x3 +N4x4

= (1 − ξ − η − ζ)x1 + ξx2 + ηx3 + ζx4

= x1 + (x2 − x1)ξ + (x3 − x1)η + (x4 − x1)ζ

The same goes for the relations for y and z. The whole can be written in the following matrix
form:  x

y
z

 =

 x1
y1
z1

+

 x2 − x1 x3 − x1 x4 − x1
y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

 ξ
η
ζ

 (19.7)

the calculation of the coordinates (ξ, η, ζ) of the point sought from its coordinates (x, y, z) is
not difficult in this precise case, because the matrix multiplying the unknown does not depend on
this unknown.

19.2.2 Jacobian matrix method
The Jacobian matrix J is written, from (19.5) and the 4 interpolation functions above [Dhatt,
Thouzot 1984, Sec. 2.5.2.] :

J =

 −1 1 0 0
−1 0 1 0
−1 0 0 1

×


x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4

 =

 x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1
x4 − x1 y4 − y1 z4 − z1

 (19.8)

and the expression (19.3), where the centre of the element is the first node, brings us back to
(19.7). This shows the equivalence of this reformulation in this specific case8.

This Jacobian matrix does not depend on the point sought, and the calculation of the coordi-
nates (ξ, η, ζ) of the point sought from its coordinates (x, y, z) does not pose any difficulties with
the aid of the relation (19.4).

19.2.3 Barycentric coordinates method
Since the tetrahedron has 4 nodes, there are 4 barycentric coordinates [Dhatt, Thouzot 1984, Sec.
2.5]. Tetrahedra are the simplest of all types of elements because their interpolation function is
linear as a function of the coordinates. The search for coordinates in the reference element, does
not pose any difficulty, therefore. First we have to find the 4 barycentric coordinates of the point
in the real element, by resolving a 4x4 linear system involving the coordinates in the real element
of the 4 nodes of the tetrahedron, e.g., (x1, y1, z1) for the first node (see Eq. 19.9).

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1




λ1
λ2
λ3
λ4

 =


x
y
z
1

 (19.9)

This is done in Code_Carmel3D using the DGESV routine (LU factorisation) from the LA-
PACK library. We then find the coordinates of the point (ξ, η, ζ) in the reference element by a

8I think this reformulation with the Jacobian matrix is true for all elements of the 1st order, where interpolation
functions involve only linear, bi-linear or tri-linear polynomials in ξ, η and ζ. Because the derivative of these
interpolation functions returns the function in part when multiplied by the variable of differentiation This would
not be the case with polynomials of higher order.
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matrix-vector product involving the barycentric coordinates previously found and the coordinates
of the 4 nodes in the reference element e.g., (ξ1, η1, ζ1) for the first node (see Eq. 19.10). For the
tetrahedron, the coordinates of the nodes in the reference element are (0,0,0), (1,0,0), (0,1,0) and
(0,0,1) respectively.

 ξ
η
ζ

 =

 ξ1 ξ2 ξ3 ξ4
η1 η2 η3 η4
ζ1 ζ2 ζ3 ζ4




λ1
λ2
λ3
λ4

 =

 0 1 0 0
0 0 1 0
0 0 0 1




λ1
λ2
λ3
λ4

 (19.10)

Equations (19.9) and (19.10) are taken from the note [Bereux 2008] (see Secs. 7.1.1 and 7.2),
without justification or bibliographic reference. In this case, the system (19.10) is easy to resolve:
we find ξ = λ2, η = λ3, ζ = λ4 and, by definition (the sum of these barycentric coordinates is
1 because the volume of the element is the sum of the 4 volumes of the tetrahedra involving the
point), λ1 = 1 − λ2 − λ3 − λ4 = 1 − ξ − η − ζ [Dhatt, Thouzot 1984, Sec. 2.5].

19.2.4 Proof of the equivalence of the last two methods

Here we show how to return to the Jacobian matrix method from the barycentric coordinate
method.

By expressing the 4 barycentric coordinates λ1, λ2, λ3, λ4 as a function of the coordinates
(ξ, η, ζ), the system (19.9) is written:

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1




1 − ξ − η − ζ
ξ
η
ζ

 =


x
y
z
1

 (19.11)

or, by developing,


x
y
z
1

 =


x1
y1
z1
1

+


(x2 − x1)ξ + (x3 − x1)η + (x4 − x1)ζ
(y2 − y1)ξ + (y3 − y1)η + (y4 − y1)ζ
(z2 − z1)ξ + (z3 − z1)η + (z4 − z1)ζ

0



=


x1
y1
z1
1

+


x2 − x1 x3 − x1 x4 − x1
y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

0 0 0


 ξ

η
ζ

 (19.12)

which becomes, by deleting the last line that has become useless, x
y
z

 =

 x1
y1
z1

+

 x2 − x1 x3 − x1 x4 − x1
y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

 ξ
η
ζ

 (19.13)

which is indeed written in the form (19.3) with the transposed Jacobian defined by (19.8) : x
y
z

 =

 x1
y1
z1

+ tJ

 ξ
η
ζ

 (19.14)

where the centre of the reference element coordinate system is indeed the first node (x1, y1, z1).
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19.3 Prisms
Figure 19.2 shows the reference prism with 6 nodes, of coordinates (0,0,-1), (1,0,-1), (0,1,-1),
(0,0,1), (1,0,1), and (0,1,1) in the numbering order 1, 2, 3, 4, 5 and 6 of the nodes [Dhatt, Thouzot
1984, Sec. 2.7].

Figure 19.2: Reference prism.

Any point in the reference prism must satisfy the inequalities: ξ ≥ 0, η ≥ 0, −1 ≤ ζ ≤ 1 and
1 − ξ − η ≥ 0. This definition is the same in code_Carmel, Code_Carmel3D and code_Carmel
spectral.

19.3.1 Nodal function method
The 6 interpolation functions are: N1(ξ, η, ζ) = λa, N2(ξ, η, ζ) = ξa, N3(ξ, η, ζ) = ηa,

N4(ξ, η, ζ) = λb, N5(ξ, η, ζ) = ξb, N6(ξ, η, ζ) = ηb where λ = 1 − ξ − η, a = (1 − ζ)/2 and
b = (1 + ζ)/2 [Dhatt, Thouzot 1984, Sec. 2.7.1]. They can also be written in the short form:

N(ξ, η, ζ) ≡ (N1(ξ, η, ζ), N1(ξ, η, ζ), . . . , Nn(ξ, η, ζ)) (19.15)
= (λa, ξa, ηa, λb, ξb, ηb) (19.16)

The relation (19.1) is written as follows:

x =
6∑

i=1
Nixi

= λax1 + ξax2 + ηax3 + λbx4 + ξbx5 + ηbx6

= a(λx1 + ξx2 + ηx3) + b(λx4 + ξx5 + ηx6)

= 1
2 {(1 − ζ) [(1 − ξ − η)x1 + ξx2 + ηx3] + (1 + ζ) [(1 − ξ − η)x4 + ξx5 + ηx6]}

= 1
2 {x1 + x4 + ξ [(1 − ζ)(x2 − x1) + (1 + ζ)(x5 − x4)] + η [(1 − ζ)(x3 − x1) + (1 + ζ)(x6 − x4)]

+ζ(x4 − x1)} (19.17)

= 1
2 {x1 + x4 + ξ(x2 − x1 + x5 − x4) + η(x3 − x1 + x6 − x4)

+ζ [x4 − x1 + ξ(x1 − x2 + x5 − x4) + η(x1 − x3 + x6 − x4)]} (19.18)
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where there are two possible expressions, (19.17) and (19.18), to factorise (ξ, η, ζ).
In practice the first expression (19.17) has poor non-linear convergence when the elements

are not extruded, and we retain the second expression (19.18), inspired by the Jacobian matrix
method, which has always given good results in our trials9. A similar relation exists for y and z.
Equation (19.18) can be expressed in the following matrix form: x

y
z

 = 1
2

 x1 + x4
y1 + y4
z1 + z4

+M

 ξ
η
ζ

 (19.19)

where the translation is relative to the barycentre of nodes 1 and 4 and matrix M is:

M = 1
2

 x2 − x1 + x5 − x4 x3 − x1 + x6 − x4 x4 − x1 + ξ(x1 − x2 + x5 − x4) + η(x1 − x3 + x6 − x4)
y2 − y1 + y5 − y4 y3 − y1 + y6 − y4 y4 − y1 + ξ(y1 − y2 + y5 − y4) + η(y1 − y3 + y6 − y4)
z2 − z1 + z5 − z4 z3 − z1 + z6 − z4 z4 − z1 + ξ(z1 − z2 + z5 − z4) + η(z1 − z3 + z6 − z4)


(19.20)

To find the coordinates (ξ, η, ζ) from coordinates (x, y, z), it is necessary to resolve the non-
linear system :  ξ

η
ζ

 = M(ξ⃗)−1


 x

y
z

− 1
2

 x1 + x4
y1 + y4
z1 + z4

 (19.21)

where ξ⃗ = (ξ, η, ζ) is the point sought.

One iterative method is substitution, which expresses the solution ξ⃗n+1 at iterate n + 1 as a
function of the solution ξ⃗n at the previous iterate, from an initial approximation of the solution.
Eq. 19.21 it thus written: ξ⃗n+1 = M(ξ⃗n)−1⃗b where b⃗ = x⃗ − (x⃗1 + x⃗4)/2. The iteration continues
until the residual of the equation

∥∥∥ξ⃗n+1 − ξ⃗n

∥∥∥ is close enough to 0. This method is not difficult
in practice, using the centre of the reference element (1/3, 1/3, 0) for example as an initial point,
when the mesh is extruded (maximum 2 iterations). The convergence is slower for a mesh that is
not extruded (up to 30 iterations to reach a residual of 1e-12).

The non-linear Newton-Raphson method is defined below in order to possibly improve this
convergence on the basis of knowledge of the first derivative of matrix M , analytic. It is recalled
that the Newton-Raphson method seeks to find the solution x to the problem f(x) = 0 using an
iterative method based on the development of f(x) in the first order: f(x) ≃ f(x0) + f ′(x0)(x−
x0) = 0, which here amounts to expressing the solution to iteration n+1: xn+1 = xn+f(xn)/f ′(xn)
from the solution to the previous iteration, from an initial estimate of the solution.

Our matrix problem (19.19) is thus written: f(ξ⃗) = M(ξ⃗)ξ⃗ − b⃗ not depending on ξ⃗ = (ξ, η, ζ).
The derivative of f is written thus f ′(ξ⃗) = M(ξ⃗) + ξ⃗dM/dξ⃗ = M + ξdM/dξ+ ηdM/dη+ ζdM/dζ,
which gives:

ξ⃗
dM

dξ⃗
= 1

2

 0 0 ξ(x1 − x2 + x5 − x4) + η(x1 − x3 + x6 − x4)
0 0 ξ(y1 − y2 + y5 − y4) + η(y1 − y3 + y6 − y4)
0 0 ξ(z1 − z2 + z5 − z4) + η(z1 − z3 + z6 − z4)

 (19.22)

and the iterative linear system to resolve is written:

 ξ
η
ζ


n+1

=

 ξ
η
ζ


n

+ dM(ξ⃗n)−1


 x

y
z

− 1
2

 x1 + x4
y1 + y4
z1 + z4

−M(ξ⃗n)

 ξ
η
ζ


n

 (19.23)

9Tests on Rubinacci’s cube composed of pure prisms of which one is deformed, i.e., with one of its nodes moved
along the 3 directions of space.
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where the derivative matrix dM , to be inverted, is written, from (19.20) and (19.22):

dM = 1
2

 x2 − x1 + x5 − x4 x3 − x1 + x6 − x4 x4 − x1 + 2ξ(x1 − x2 + x5 − x4) + 2η(x1 − x3 + x6 − x4)
y2 − y1 + y5 − y4 y3 − y1 + y6 − y4 y4 − y1 + 2ξ(y1 − y2 + y5 − y4) + 2η(y1 − y3 + y6 − y4)
z2 − z1 + z5 − z4 z3 − z1 + z6 − z4 z4 − z1 + 2ξ(z1 − z2 + z5 − z4) + 2η(z1 − z3 + z6 − z4)


(19.24)

In practice, the Newton-Raphson method provides no improvement on an extruded mesh, and
it even converges more slowly most of the time than the substitution method on a non-extruded
mesh10.

Finally, it is easy to see why the convergence is also good for an extruded mesh. There is
thus a relation between the node coordinates of an element that makes this problem linear. For
example, for prisms orientated along the Oz axis, we have x5 = x2, x4 = x1 and x6 = x3 which
allows us to write x1 − x2 + x5 − x4 = 0 and x1 − x3 + x6 − x4 = 0. The same goes for the
relation in y for the same reasons. This is also valid for the relation in z because distance ∆z
between the two triangular faces of the prisms is the same at any point, i.e. for all its nodes. Thus
z5 −z2 = z6 −z3 = z4 −z1 = ∆z, which allows us to write z1 −z2 +z5 −z4 = 0 and z1 −z3 +z6 −z4.
In the end, matrix M only depends on the coordinates of the nodes and no longer the unknowns
ξ or ζ. It is written:

M = 1
2

 x2 − x1 + x5 − x4 x3 − x1 + x6 − x4 x4 − x1
y2 − y1 + y5 − y4 y3 − y1 + y6 − y4 y4 − y1
z2 − z1 + z5 − z4 z3 − z1 + z6 − z4 z4 − z1

 (19.25)

The Newton-Raphson method is then equivalent, analytically, to the substitution method, but
adds a possible rounding error.

19.3.2 Jacobian matrix method
The Jacobian matrix is written:

J =


∂N1
∂ξ

∂N2
∂ξ · · · ∂N6

∂ξ
∂N1
∂η

∂N2
∂η · · · ∂N6

∂η
∂N1
∂ζ

∂N2
∂ζ · · · ∂N6

∂ζ

×


x1 y1 z1
x2 y2 z2
...

...
...

x6 y6 z6



=

 −a a 0 −b b 0
−a 0 a −b 0 b

−λ/2 −ξ/2 −η/2 λ/2 ξ/2 η/2

×


x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5
x6 y6 z6

 (19.26)

where λ = 1 − ξ−η, a = (1 − ζ)/2 and b = (1 + ζ)/2 have been defined above (see Sec. 19.3.1).
We will detail below the expression of x, and show in which cases it is equivalent to the nodal

function method. From (19.3) and (19.26), we can write x = x0 + J11ξ+ J21η+ J31ζ where J11 =
a(x2−x1)+b(x5−x4), J21 = a(x3−x1)+b(x6−x4) and J31 = 1

2 [λ(x4 − x1) + ξ(x5 − x2) + η(x6 − x3)].
The whole is thus written:

x = x0

+ξ [(1 − ζ)(x2 − x1) + (1 + ζ)(x5 − x4)]
+η [(1 − ζ)(x3 − x1) + (1 + ζ)(x6 − x4)]
+ζ [x4 − x1 + ξ(x1 − x2 + x5 − x4) + η(x1 − x3 + x6 − x4)] (19.27)

10Tested on Rubinacci’s cube with 500 extruded prisms along the axis Ox, with one node moved along Oz to
create two non-extruded elements.
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The same for y and z. We see that (19.27) is equivalent to (19.17 if and only if:

1. The translation point x0 is indeed the centre of the reference element (x1 + x4)/2,

2. The dependence in ξ and η of the last line is zero, i.e., x1 − x2 + x5 − x4 = 0 and x1 − x3 +
x6 − x4 = 0.

These two conditions must also be met by the other components y and z.

Concerning condition 2) on cancellation, it is possible for any extruded mesh because there is
a relation between the coordinates of the nodes (see Sec. 19.3.1). This is still true if the mesh is
rotated in any way with respect to Oxyz11, because this rotation maintains the relations below
by simply mixing the relations in x, y and z. This is no longer true, however, if an element is
deformed. In this case the Jacobian matrix method does not give good results compared with the
nodal functions method12.

19.3.3 Barycentric coordinates method

This method was programmed by Damien Laval (EDF R&D). The code does not contain comments
and largely reproduces the notation introduced for tetrahedra (see Sec. 19.2.3). Algorithm 19.1
is decoded below, using the notation in the preceding sections. We solve the matrix problem (size
4x4):

A


ξ
η
ζ
µ

 = b = 2




x
y
z
1

− 1
2


x1 + x4
y1 + y4
z1 + z4

1


 (19.28)

where the 4x4 matrix: A = ALIN +ANLIN is decomposed into its linear and non-linear parts:

ALIN =


x2 − x1 + x5 − x4 x3 − x1 + x6 − x4 x4 − x1 1
y2 − y1 + y5 − y4 y3 − y1 + y6 − y4 y4 − y1 1
z2 − z1 + z5 − z4 z3 − z1 + z6 − z4 z4 − z1 1

0 0 0 1

 (19.29)

and

ANLIN = ζ


x1 − x2 + x5 − x4 x1 − x3 + x6 − x4 0 0
y1 − y2 + y5 − y4 y1 − y3 + y6 − y4 0 0
z1 − z2 + z5 − z4 z1 − z3 + z6 − z4 0 0

0 0 0 0

 (19.30)

The resolution of the system (19.28), non-linear in ζ, is performed iteratively, from the initial
value (ξ, η, ζ, µ) = (1/4, 1/4, 1/4, 1/4), until the residual of this system is close to 0. The 4th
unknown µ is not really unknown because the system (19.28) leads to the solution µ = 1. The
algorithm notation is : ALIN for ALIN , ANLIN for ANLIN , lambda_tot(1:4) for (ξ, η, ζ, µ). The
equivalence between λtot and the coordinates of the point in the reference element is not obvious.
It is proved below. Algorithm 19.1 expresses these coordinates according to the coordinates of the
nodes of the prism in the reference element: xi(i), eta(i) and zeta(i), and a lambda vector of size
6. These relations are written:

11We tested it on Rubinacci’s cube turned by 45° relative to the Ox axis.
12We tested it by moving a node in the 3 directions of space, then making a section line along the deformed edge.

The nodal function method finds the coordinates ξ = 0, η = 1 and ζ ∈ [-1,1] as it should. The Jacobian matrix
method finds ζ ∈ [-0.666...,0.666]. The field path is much better for the nodal functions method.
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ξ =
6∑

i=1
ξiλi = λ2 + λ5 = λtot(1)

η =
6∑

i=1
ηiλi = λ3 + λ6 = λtot(2)

ζ =
6∑

i=1
ζiλi = λ4 + λ5 + λ6 − (λ1 + λ2 + λ3) = λtot(3) (19.31)

using the known coordinates ξi, ηi and ζi of the nodes in the reference element (see Sec. 19.3).
All this is equivalent to the nodal function method using the first expression (19.17), which causes
convergence problems when the mesh is not not extruded, as we found. Although the algorithm
19.1 is in a form appropriate to the non-linear Newton-Raphson method, the inverted matrix is
not the correct one and the method used is substitution. Probably with rounding errors coming
from this shape and perhaps from the unnecessary fourth dimension.
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Algorithm 19.1 Barycentric coordinates method programmed for prisms.
ALIN(1:4,1:4) = 0
ALIN(1,1) = - x1 + x2 - x4 + x5
... the same holds for ALIN(2,1) and ALIN(3,1) by replacing x with y and z, respectively
ALIN(1,2) = - x1 + x3 - x4 + x6
... the same holds for ALIN(2,2) and ALIN(3,2) by replacing x with y and z, respectively
ALIN(1,3) = - x1 + x4
... the same holds for ALIN(2,3) and ALIN(3,3) by replacing x with y and z, respectively
ALIN(4,:) = 1
b(1) = 2 * x - ( x1 + x4 )
... the same holds for b(2) and b(3) by replacing x with y and z, respectively
b(4) = 1
lambda_tot(1:4) = 0.25
ANLIN(1:4,1:4) = 0
ANLIN(1,1) = lambda_tot(3) * ( x1 - x2 - x4 + x5 )
... the same holds for ANLIN(2,1) and ALIN(3,1) by replacing x with y and z, respectively
ANLIN(1,2) = lambda_tot(3) * ( x1 - x3 - x4 + x6 )
... the same holds for ANLIN(2,2) and ALIN(3,2) by replacing x with y and z, respectively
ANLIN = ANLIN + ALIN
res(1:4) = b(1:4) - ANLIN(1:4,1:4) * lambda_tot(1:4)
err = 1
iter = 0
while iter < 50 et err > 1e-12 do

lambda2(1:4) = res(1:4)
inversion of ANLIN by subroutine LAPACK DGESV -> lambda2 = inverse(ANLIN)*lambda2
lambda_tot(1:4) = lambda_tot(1:4) + lambda2(1:4)
updating of ANLIN with the new value of lambda_tot
ANLIN = ANLIN + ALIN
updating of res and err

end while
lambda(1) = ( 1 - lambda_tot(1) - lambda_tot(2) ) * ( 1 - lambda_tot(3) ) / 2
lambda(2) = lambda_tot(1) * ( 1 - lambda_tot(3) ) / 2
lambda(3) = lambda_tot(2) * ( 1 - lambda_tot(3) ) / 2
lambda(4) = ( 1 - lambda_tot(1) - lambda_tot(2) ) * ( 1 + lambda_tot(3) ) / 2
lambda(5) = lambda_tot(1) * ( 1 + lambda_tot(3) ) / 2
lambda(6) = lambda_tot(2) * ( 1 + lambda_tot(3) ) / 2
xi = sum on i from 1 to 6 of xi(i) * lambda(i)
eta = sum on i from 1 to 6 of eta(i) * lambda(i)
zeta = sum on i from 1 to 6 of zeta(i) * lambda(i)
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Appendix B

The quasi steady-state
approximation (QSSA)

The quasi-steady-state approximation (QSSA) is a simplification of Maxwell’s equations obtained
when sources are slowly variable over time. The QSSA is also known as the eddy current model or
the magnetodynamic model. To fully understand this approximation, two approaches are detailed
below.

B.1 Analysis of time constants
A mathematical study of the transition from Maxwell’s equations to the approximate model is
presented in [Ammari et al 2000]. For this first approach, this section follows the presentation in
[Pérez et al 1990] (pp. 272-282).

The QSSA consists in neglecting the propagation time of the electrical phenomena τem in the
system studied compared with the characteristic time of variation of the source Ts. For a periodic
current source, this characteristic time is the time period of the current.

Hence, in a vacuum, an electromagnetic wave spreads at the speed of light,

c = 3 . 108 m.s−1.

The propagation time between two points 3 m apart is:

τem = 3
3 . 108 = 10−8 s

The characteristic time for a current source at 50 Hz is:

Ts = 1
50 = 2 . 10−2 s

We have:

τem << Ts
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Appendix C

U.w gauge condition

Let V be a vector field defined by div V = 0. We thus have V derived from a vector potential U
such that rotU = V. However, if we define U1 and U2 such that their curl is equal to V, this
gives:

U1 − U2 = gradλ (C.1)

This relation shows that U is defined at a given gradient. To ensure a unique solution, it is
thus necessary to set a scalar potential λ.

Now consider a vector field w whose field lines do not close and are such that they connect all
points in domain D. Setting the condition:

U1 .w = f (r)
U2 .w = f (r) (C.2)

These last two relations show that:

gradλ .w = 0 (C.3)

This condition comes down to setting λ. If we calculate the flow along the path ΓP →Q which
is written:

ΓP →Q =
∫ Q

P

gradλ .dl = λQ − λP (C.4)

since field w can link all the points of the mesh, it is possible to choose flow ΓP →Q along w.
However, equation C.3 requires that this flow is zero, hence ΓP →Q is zero, which requires λP = λQ

and therefore sets λ and gauge U.
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Appendix D

Incorporation of Overlapping
elements into code_Carmel

This chapter seeks to explain the incorporation of Overlapping Elements (or Overelements) into
code_Carmel. The Overlapping method[Demenko et al 2006][Tsukerman 1992] allows motion to be
considered for any rotation, and appears from this point of view as a generalisation of the blocked
step. The method implemented here derives from the work done by Xiaodong Shi[Demenko et al
2006], and extends it to the edge functions to make it compatible with the formulation in A.

D.1 Presentation of the Overlapping element
The Overlapping element implemented in code_Carmel is an extension of the hexahedron. It
allows motion to be considered in a non-mesh domain, without having to re-mesh during the
motion.

D.1.1 Reference element
The Overlapping reference element is shown in Figure D.1. Unlike the hexahedron, the coordinate
of its vertices is no longer 1 or −1 along x, but −a (S1, S5), b (S2, S6), c (S3, S7) or finally d
(S4, S8), with a, b, c, d ≥ 1. The integration zone of the Overlapping element is identical to that
of the hexahedron: (x, y, z) ∈ [−1, 1]3, represented by the hexahedral surface in Figure D.1.
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Figure D.1: Reference pyramid

In practice, however, the code uses two special cases of this general element, the left Overlapping
element (b = d = 1) and the right Overlapping element (a = c = 1) , as shown in Figure D.2.

Left overelement Right overelement

Figure D.2: Reference pyramid
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The coordinates of the vertices are:

S1 =


−a

−1

−1

 , S2 =


b

−1

−1

 , S3 =


c

1

−1

 , S4 =


−d

1

−1



S5 =


−a

−1

1

 , S6 =


b

−1

1

 , S7 =


c

1

1

 , S8 =


−d

1

1



We will now present the shape functions used.

D.1.2 Nodal shape functions
The nodal functions are used to discretise elements belonging to (H1(Ω))3. The nodal function
associated with a node is 1 on that node, and 0 on all other nodes:∫

{Sj}
wn

i · δnj
= δj

i (D.1)

where δnj is the Dirac distribution associated with node j, and δj
i , the Kronecker symbol. The 5

nodal functions are:

wn
1 (x, y, z) = (b− x)(1 − y)(1 − z)

4(a+ b)

wn
2 (x, y, z) = (a+ x)(1 − y)(1 − z)

4(a+ b)

wn
3 (x, y, z) = (d+ x)(1 + y)(1 − z)

4(c+ d)

wn
4 (x, y, z) = (c− x)(1 + y)(1 − z)

4(c+ d)

wn
5 (x, y, z) = (b− x)(1 − y)(1 + z)

4(a+ b)

wn
6 (x, y, z) = (a+ x)(1 − y)(1 + z)

4(a+ b)

wn
7 (x, y, z) = (d+ x)(1 + y)(1 + z)

4(c+ d)

wn
8 (x, y, z) = (c− x)(1 + y)(1 + z)

4(c+ d)

It can be seen that they form a partition of the unit on the element.

D.1.3 Edge shape functions
The “edge” functions are used to discretise elements belonging to H(rot,Ω). They are referred to
as edge functions because their circulation is equal to 1 on the edge with which they are associated,
and 0 otherwise. They thus verify the following property:
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∫
ej

we
i · dl = δij (D.2)

They can be calculated using the reference formula [Geuzaine 2001]. However, with this ap-
proach, the nodal functions of the hexahedron or the Overlapping element should be used depend-
ing on whether the edge functions are calculated parallel to (Ox), (Oy) or (Oz). It is therefore
easier to obtain them intuitively from the hexahedron.

The expressions for the functions associated with edge we
ij , oriented from i to j are finally:

- for the edges along (Ox):

we
12 =


(1−y)(1−z)

4(a+b)

0

0

 , we
56 =


(1−y)(1+z)

4(a+b)

0

0

 , we
43 =


(1+y)(1−z)

4(c+d)

0

0

 , we
87 =


(1+y)(1+z)

4(c+d)

0

0



- for the edges along (Oy):

we
14 =


0

(1−x)(1−z)
8

0

 , we
23 =


0

(1+x)(1−z)
8

0

 , we
58 =


0

(1−x)(1+z)
8

0

 , we
67 =


0

(1+x)(1+z)
8

0



- for the edges along (Oz):

we
15 =


0

0

(1−y)(b−x)
4(a+b)

 , we
26 =


0

0

(1−y)(a+x)
4(a+b)

 , we
37 =


0

0

(1+y)(d+x)
4(c+d)

 , we
48 =


0

(1+y)(c−x)
4(c+d)



D.1.4 Gauss points

The Gauss points used are derived from those of the hexahedron in code_Aster, with 8 points.
(Those in code_Carmel with 6 points appear to give very imprecise results...)
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The 8 Gauss points used are:

p1 =


a1

a1

a1

 , p2 =


a1

a1

−a1

 , p3 =


a1

−a1

a1

 , p4 =


a1

−a1

−a1

 (D.3)

(D.4)

p5 =


−a1

a1

a1

 , p6 =


−a1

a1

−a1

 , p7 =


−a1

−a1

a1

 , p8 =


−a1

−a1

−a1

 (D.5)

with:

a1 = 1√
3

The weights used are identical and equal to:

w1 = 1

We can verify that the sum of the 8 weights is indeed equal to 8, the area of the hexahedron
on which the numerical integration is performed.
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Appendix E

Taking account of non-linearity

To take account of non-linear materials with the finite element model, the constitutive relation as
well as the explicit calculation of the Jacobian is explained.

E.1 Non-linear constitutive relation
To model the non-linear character of the material, a Marrocco-type law is used:

ν (∥B∥) = 1
µ0

(
ϵm + (cm − ϵm) ∥B∥2α

∥B∥2α + τm

)
(E.1)

where ϵm, τm and α are constants drawn from experience.

This modelling of non-linearity notably has three properties that allow the existence and
uniqueness of the non-linear magnetostatic problem to be established:

∃ ν0 / ∀ z, νz ≥ ν0 (E.2)

∃ ν∞ / ∀ z,
dν(z)

dz
≤ ν∞ (E.3)

∃M / ∀ z,
dν(z)

dz
z + ν(z) ≤ M (E.4)

E.2 Calculation of the Jacobian
We recall the expression for the residual vector associated with the generic system of equations at
the kème time step:

R
(
Xk

j

)
=
(

K
τ

+ Mθ

(
θk
)

+ M
(
Xk

j

))
Xk

j − C Uk − K
τ

Xk−1 (E.5)

The Jacobian matrix J associated with the residual is thus written:

J = K
τ

+ Mθ

(
θk
)

+ J
(
Xk

j

)
(E.6)

with the non-linear part of the Jacobian defined by:

J =
∂
(
M
(
Xk

j

)
Xk

j

)
∂Xk

j

(E.7)

299



300 APPENDIX E. TAKING ACCOUNT OF NON-LINEARITY

This matrix RN×N represents the non-linear behaviour of ferromagnetic materials. In our
model, the properties of these materials vary with ∥B∥. However, because B = rot A, only
unknown A generates a non-linearity (and thus the unknowns ϕ where the currents ik, k = 1, ..., |ν|
are not explicitement responsible for this non-linear behaviour). Thus, and in a non-reductive
manner, we present in this annex the calculation of the non-linear part of the Jacobian matrix for
a magnetostatic problem without circuit coupling.

The finite element method leads to the N following equations Ei, i = 1, ..., N :

Ei :
∫

D

(
H (A) .rotw1

i

)
=
∫

D

(
Js.w1

i

)
(E.8)

The Jacobian associated with equations Ei has the following coefficients:

(
J
)

i,j
(A) =

∫
D

(
∂H (A)
∂Aj

.rotw1
i

)
dD (E.9)

However, we have the following relations:

H (A) = ν (∥B∥) B (E.10)

B = rot A (E.11)
Hence:

∂H (A)
∂Aj

= ∂ν (∥B∥)
∂Aj

B + ν (∥B∥) ∂B
∂Aj

(E.12)

In this sum of two terms, the second is simple to express. Knowing that B = rot A and, using
the breakdown of the finite elements A =

∑
l

Al w1
l , we have:

ν (∥B∥) ∂B
∂Aj

= ν (∥B∥) rot w1
j (E.13)

The first term is expressed using the compound differentiation:

B∂ν (∥B∥)
∂Aj

= B∂ν (∥B∥)
∂∥B∥

.
∂∥B∥
∂∥B∥2 .

∂∥B∥2

∂Aj
(E.14)

Then:

B∂ν (∥B∥)
∂Aj

= B ν′ (∥B∥) . 1
2 ∥B∥

.

(
∂∥B∥2

∂Bx

∂Bx

∂Aj
+ ∂∥B∥2

∂By

∂By

∂Aj
+ ∂∥B∥2

∂Bz

∂Bz

∂Aj

)
(E.15)

And further:

B∂ν (∥B∥)
∂Aj

= ν′ (∥B∥) B
2 ∥B∥

(
2Bx

(
rotw1

j

)
x

ex + 2By

(
rotw1

j

)
y

ey + 2Bz

(
rotw1

j

)
z

ez

)
(E.16)

And finally:

B∂ν (∥B∥)
∂Aj

= ν′ (∥B∥)
∥B∥

(B ⊗ B) .rot w1
j (E.17)

where the tensor product of B by itself is:

B ⊗ B =

 BxBx BxBy BxBz

ByBx ByBy ByBz

BzBx BzBy BzBz

 (E.18)
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Finally, defining the non-linear reluctivity matrix ν by:

ν = ν (∥B∥) I3 + ν′ (∥B∥)
∥B∥

B ⊗ B (E.19)

The final expression of the Jacobian is:(
J
)

i,j
(A) =

∫
D

(
νrotw1

j .rotw1
i

)
dD (E.20)

E.3 Breakdown of operators into linear and non-linear parts
Although this section is trivial, it is worth recalling as it saves considerable time when assembling
the full model.

Hence, it is often more efficient to separate the linear part of matrix M (.) from the non-linear
part. We thus break down M (.) into:

M (.) = Mlin + Mnl (.) (E.21)

where Mlin and Mnl (.) are two square matrices of RN×N . Mlin corresponds in particular
to domains where the magnetic permeability is constant. Thus, the non-linear matrix Mnl (.) is
derived from the assembly of elements located in the non-linear ferromagnetic domains.

Similarly, the Jacobian can be broken down into a linear part Jlin and a non-linear part Jnl:

J (.) = Jlin + Jnl (.) (E.22)

with the two matrices Jlin and Jnl defined by:

Jlin = K
τ

+ Mθ

(
θk
)

+ Mlin (E.23)

and:

Jnl

(
Xk

j

)
=

∂
(
Mnl

(
Xk

j

)
Xk

j

)
∂Xk

j

(E.24)

=
∂
(
Mnl

(
Xk

j

))
∂Xk

j

Xk
j + Mnl

(
Xk

j

)
(E.25)
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Appendix F

Discrete model from incidence
matrices

F.1 Discrete differential operators
Using the concept of incidence, “discrete” differential operators may be defined [Bossavit 1993],
[Tonti 2000], [Clemens, Weiland 1987]. These are matrix operators whose construction is based
on the connections between the different geometric entities that are the nodes, edges, facets and
volumes. A pair of tetrahedra is then used to illustrate the developments concerning the discrete
differential operators (see Figure F.1). The example shown has 5 nodes, 9 edges and 7 facets.

Figure F.1: Pair of tetrahedra used to illustrate the definition of incidence matrices

F.1.1 Node-edge incidence
Edges are geometric elements that are arbitrarily orientated. For example, we can choose an
orientation from the node with the lowest index to the node with the highest index. The numbering
of the edges as a function of the nodes, for the example in Figure F.1, is given in Table F.1.

By definition, the incidence gan of a node n on an edge a is -1 if node n is the origin of edge
a, 1 if n is the end of a or 0 if n does not belong to a. We thus define the incidence matrix G of

303
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edges 1 2 3 4 5 6 7 8 9
nodes 1,2 1,3 1,4 1,5 2,3 2,4 3,4 3,5 4,5

Table F.1: Edge numbering

size na × nn with coefficients (gan)(1≤a≤na et 1≤n≤nn). For the example considered, we obtain the
following matrix G:

G =



−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1
0 −1 1 0 0
0 −1 0 1 0
0 0 −1 1 0
0 0 −1 0 1
0 0 0 −1 1


(F.1)

Now consider two functions, one scalar, denoted un and the other vector, denoted ua, belonging
respectively to W 0 and W1, such that ua = gradun.

we take:

un = Ut
nWn =

∑
unwn (F.2)

and

ua = Ut
aWa =

∑
uawa (F.3)

Hence, we can show that:

Ua = GUn (F.4)

with Ua ∈ W1 and Un ∈ W0.

Matrix G can thus be considered as the discrete operator of the gradient.

F.1.2 Edge-facet incidence
Facets are also orientated geometric elements. The orientation of a facet may be given, by con-
vention, by the direction of increasing nodes in the case of triangular facets. This convention only
applies when the number of nodes per facet is less than or equal to 3. The numbering of the facets
as a function of the nodes is given in Table F.2.

facets 1 2 3 4 5 6 7
nodes 1,2,3 1,2,4 1,3,4 1,3,5 1,4,5 2,3,4 3,4,5

Table F.2: Facet numbering

The incidence rfa of an edge a relative to a facet f is 1 if, by traversing the boundary of the
facet in the positive direction, edge a is traversed in its positive direction, -1 if the direction of a
is opposite and 0 if a does not belong to f . A Using coefficients (rfa)(1≤f≤nf et 1≤a≤na) we define
a matrix R of size nf × na. For our example, this matrix is equal to:
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R =



1 −1 0 0 1 0 0 0 0
1 0 −1 0 0 1 0 0 0
0 1 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 1 0
0 0 1 −1 0 0 0 0 1
0 0 0 0 1 −1 1 0 0
0 0 0 0 0 0 1 −1 1


(F.5)

Now consider a vector function, denoted uf , belonging to W2 such that uf = rotua. We take:

uf = Ut
f Wf =

∑
uf wf (F.6)

We can show that:

Uf = RUa (F.7)

with Uf ∈ W2 and hence R is the discrete operator of the curl.

F.1.3 Facet-element incidence
The numbering of the elements as a function of the for the example in Figure F.1 is given in Table
F.3.

elements 1 2
nodes 1,2,3,4 1,3,4,5

Table F.3: Element numbering

The incidence def of a facet f on an element e is 1 or -1 depending on the orientation of the
normal to the facet or 0 if f does not belong to e. We can thus define matrix D with coefficients
(def )(1≤e≤ne et 1≤f≤nf ). For the example considered, the incidence matrix D of size ne ×nf is thus
equal to:

D =
(

1 −1 1 0 0 −1 0
0 0 −1 1 −1 0 1

)
(F.8)

For a scalar function ue belonging to W3 and defined such that ue = divuf . We can show
that:

Ue = DUf (F.9)

with Ue ∈ W3 D and the discrete operator of the divergence.

F.1.4 Properties
Discrete operators have properties similar to those of differential operators in the continuous
domain [Bossavit 1993]. In the case of a contractile domain, relations 5.4 remain valid on the
spaces Wi (i ∈ {0, 1, 2, 3}), and they are written:

Ker
(
R
(
W1)) = Im

(
G
(
W0)) (F.10)

Ker
(
D
(
W2)) = Im

(
R
(
W1)) (F.11)

We thus have DR = 0, this property remains true even if D is not contractile. Conversely, if
Uf belonging to W2 is zero divergence, then there is a vector Ua in W1 such that Uf = RUa.
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Remark F.1.1 From a practical point of view, a method based on a tree technique can be used to
determine vector Ua knowing vector Uf (see annex G). Similarly, if the curl of Ua is zero, there
is a vector Un in W0 such that Ua = GUn and we also have RGUn = 0.

We can now propose a notation for Maxwell’s equations in the discrete domain. Thus, according
to the above, equations 1.3 and 1.4 can be written in the form:

REa = −∂Bf

∂t
(F.12)

DBf = 0 (F.13)

with Ea a function of W1 × [0, T ] (the coefficients of vector Ea are time-dependent scalar
functions which represent the flows of the electric field on the edges of the mesh) and Bf a
function of W2 × [0, T ] (the coefficients of vector Bf are time-dependent scalar functions that
represent the flux of the magnetic induction across the mesh facets).

F.2 Dual mesh
It is not easy to verify all Maxwell’s equations on the same mesh simultaneously. Hence, it can
be useful, as will be seen below, to introduce a second mesh called dual and denoted M̃ that we
construct from mesh M that we will refer to as primal [Bossavit, Kettunen 2000], [Tonti 2001].

Next, we will develop the construction of the dual mesh from the primal mesh. Then we will
list some properties of this pair of meshes, in particular regarding the discrete operators introduced
earlier.

F.2.1 Définitions
Each geometric entity in the primal mesh is matched by a geometric entity in the dual mesh: with
a primal node n of M , we associate a dual element ẽ of M̃ , with a primal edge a a dual facet f̃ ,
with a facet f an edge ã and with an element e a node ñ.

Each edge a of M must traverse only one facet f̃ of M̃ and vice versa, and each node n of M
is placed inside a element ẽ of M̃ and vice versa.

The orientation of each entity in M̃ is deduced from the orientation of the primal entities. For
example, application of the right hand rule allows deduction of the orientation of a facet f̃ from
the orientation of edge a. An illustration of these orientations is given in Figures F.2 and F.3.

Figure F.2: Orientation of a facet f̃ from the orientation of an edge a

The previous definition only gives the number of dual geometric entities and their connections.
To fully define mesh M̃ it is necessary to position the nodes, edges, facets and elements. Various
techniques can be used. In the literature, we can find barycentric or Delaunay-Voronoi dual
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Figure F.3: Orientation of an edge ã from the orientation of a facet f

meshes. Barycentric dual meshes are based on the barycentre of each entity of the primal mesh,
an edge ã traverses a facet f at its barycentre and a dual node is located at the barycentre of
a primal element, and vice versa. For Delaunay-Voronoi dual meshes, the dual edges traverse
the primal facets perpendicular to their media. To illustrate these two types of dual mesh, a 2D
example is given in Figures F.4 and F.5.

Figure F.4: Barycentric dual mesh

Figure F.5: Delaunay-Voronoi dual mesh

Remark F.2.1 It should be noted that the elements generated for a dual mesh are polyhedra that
can be complex shapes especially with a tetrahedral mesh. A special case is a mesh of regular
hexahedra that leads to a dual mesh that is also hexahedral. This property has been put to good use
in the finite integration method. In the case of the finite element method, the dual mesh is implicit
and thus not constructed, and resembles a barycentric dual mesh. This aspect will be dealt with in
more detail later.
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F.2.2 Properties
As with the primal mesh, an interpolation function is associated with each dual entity. Discrete
spaces are also generated by these functions. We thus have W̃ 0, W̃1, W̃2 and W̃ 3 the spaces
generated respectively by the nodal, edge, facet and volume functions of the dual mesh and W̃0,
W̃1, W̃2 and W̃3 the spaces generated by the degrees of freedom associated with the dual nodes,
edges, facets and elements. These spaces have the same properties as those defined by the primal
mesh.

Incidence matrices are also introduced by the various connections between dual entities. We
denote G̃, R̃ and D̃ the discrete differential operators of the gradient, curl and divergence re-
spectively. Similarly, the properties of discrete operators F.10 and F.11 remain valid on the dual
mesh.

As the orientation of the dual entities is deduced from the orientation of the primal entities,
properties between the discrete operators of M and M̃ can be demonstrated, we thus have:

G = −D̃t (F.14)
R = R̃t (F.15)
D = −G̃t (F.16)

F.3 Discrete Maxwell’s equations
Given that E and B are discretised on the primal mesh, we now discretise the magnetic field H
and the current density J on the dual mesh. This choice is arbitrary, especially since the dual
mesh of M̃ is the primal mesh M itself. Inversion is thus easily possible. We define Bf the degrees
of freedom associated with fluxes of B across all facets of M , Ea the degrees of freedom associated
with flows of E on all edges of M , H̃a the degrees of freedom associated with flows of H on all
edges of M̃ and J̃f the degrees of freedom associated with flows of J across all facets of M̃ . Using
the discrete operators of the two meshes, Maxwell’s equations are written in the form:

R̃H̃a = J̃a (F.17)

REa = −∂Bf

∂t
(F.18)

DBf = (F.19)
D̃J̃f = 0 (F.20)

Concerning the boundary conditions, they are imposed on the sequences of discrete spaces
of the primal and dual meshes as a function of the discretised fields. In our case, the magnetic
induction is projected onto the primal mesh, so the type ΓB condition is associated with the
sequence of spaces of M . We thus define the spaces Wi

B by analogy with spaces W i
B , W 2

B is then a
sub-space of W2 grouping all vectors whose coefficients correspond to facets of ΓB are zero. Any
vector of W2

B leads to a discrete field Uf of W2
B with zero flux through ΓB . In the same way, the

sequence of discrete spaces of the dual mesh is associated with the boundary condition of type
ΓH . By introducing the projection of fields and potentials in the discrete spaces, we obtain:

• for the primal mesh:
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• for the dual mesh:

F.4 Discretisation of the constitutive relations
With the discretisation of Maxwell’s equations established, we now have to discretise the consti-
tutive relations. In the continuous domain, we have “local” relations. Indeed, if we know H at a
point on a soft ferromagnetic material, we can calculate B at that point knowing the permeability
µ. In the discrete domain, fields are not given locally but rather globally in terms of flow or flux
along a finite number of edges and facets, and it is thus necessary to rewrite the constitutive re-
lations known in the continuous domain in the discrete domain [Bossavit, Kettunen 2000], [Tonti
2001a], [Marrone 2004], [Alotto, Perugia 2004], [Tarhasaari et al 1999]. Thus, relations must be
found that link the different discretised magnetic and electric values: H̃a with Bf and Ea with
J̃f .

Several methods in the literature can be used to obtain these relations. As an example, we will
determine a “discrete” constitutive relation linking H̃a and Bf in the case of a linear magnetostatic
problem, basing it on a calculation of magnetic energy. In the continuous domain, the magnetic
energy Wmag stored in a material characterised by a linear constitutive relation B = µH is deduced
from the following relation:

Wmag = 1
2

∫
D

HBt dD = 1
2

∫
D

1
µ

BBt dD (F.21)

by replacing B with its discrete 7.9, the expression becomes:

W 1
mag = 1

2

∫
D

1
µ

Bt
f Wf

(
Bt

f Wf

)t
dD = 1

2

∫
D

1
µ

Bt
f Wf Wt

f BfdD (F.22)

We thus introduce the mass matrix Mµ−1

ff of size nf ×nf such that these coefficients mµ−1

ff are
written:

mµ−1

ff =
∫

D

1
µ

wf wf ′ dD avec 1 ≤ f ≤ nf et 1 ≤ f ′ ≤ nf (F.23)

The magnetic energy is then:

W 1
mag = 1

2Bt
f Mµ−1

ff Bf (F.24)
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Another way to introduce magnetic energy into the discrete domain is to take the view that
this is given by:

W 2
mag = 1

2Bf H̃t
a (F.25)

If we want W 1
mag and W 2

mag to be equal for any vector Bf , then we have:

H̃a = Mµ−1

ff Bf (F.26)

In this way, a constitutive relation linking H̃a and Bf is established.

It is also possible to determine a discrete constitutive relation if the interpolation functions
on the dual mesh are known. A similar approach to that presented above is used, the magnetic
energy is thus expressed as a function of the magnetic field (equation F.21). This approach leads
to:

Bf = MµããH̃a (F.27)

mµãã =
∫

D
µw̃aw̃a′ dD avec 1 ≤ a ≤ nã et 1 ≤ a′ ≤ nã (F.28)

with Mµãã of size nã × nã of M̃ .

Similarly, based on a calculation of electric energy, the relation linking Ea and J̃f is given by:

J̃f = Mσ
aaEa (F.29)

with Mσ
aa, of size na × na of M , whose coefficients mσ

aa are given by:

mσ
aa =

∫
D
σwawa′ dD avec 1 ≤ a ≤ na et 1 ≤ a′ ≤ na (F.30)

If the interpolation functions are linearly independent, then these matrices, called mass matri-
ces, are invertible. We can thus link Bf to H̃a (Ea to J̃e respectively ) and vice versa.

F.5 Discrete formulations
Using discretised Maxwell’s equations and mass matrices, a discrete Tonti diagram can be obtained
(Figure F.6). This is the reproduction in the discrete domain of the Tonti diagram associated with
the continuous domain.
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dual mesh primal mesh

Figure F.6: Discrete Tonti diagram

On this diagram, we can note that the mass matrices “make the link” between the sequences
of spaces defined on the primal mesh and the dual mesh.

Below, by using the incidence and mass matrices, we will develop the discrete formulations in
potential to solve magnetodynamic, magnetostatic and electrokinetic problems. We apply the same
conditions as in Chapter 2. We recall that a conductive domain Dc, assumed to be contractible,
is contained in domain D and that the only source of fields consist of a wound inductor with its
current density denoted Js. In these conditions, as in the continuous domain, the local form of
Ampère’s circuital law is written:

R̃H̃a = J̃find + J̃fs (F.31)

with J̃find = Mσ
aaEa, R̃H̃as = J̃fs et J̃fs = MasJ̃fs (F.32)

with J̃find, all fluxes of the induced current density through the dual facets of Dc; J̃fs, the set
of fluxes of Js through the facets of M̃ ; and Has, the set of flows of the source field Hs on the
dual edges.

F.5.1 Current density discretisation
Depending on the need of the chosen formulation, the current density Js is either discretised on
the primal mesh or on the dual mesh. If we want to have the current density on the dual mesh,
the current density distribution Js is determined on the primal mesh and then projected onto the
dual mesh using matrix Maf .

In the literature, several methods can be used to calculate the current density Js for a given
shape of inductor. This can be done directly, through a potential or through a source field Hs

such that rotHs = Js [Nakata et al, 1988]. With this relation, the current density is implicitly
conserved. In the case of a wound inductor of simple shape, the density Js may be determined
analytically. For wound inductors, the Biot-Savart law can be used to calculate a source field.
However, for volume inductors, this method proves inappropriate. Nevertheless, it allows inductors
to be taken into account without explicitly meshing them [Mayergoyz 1983], [Biro, Preis 2000].

For other methods, a vector potential is calculated by minimising the quantity (rotHs − Js)2

in a sub-domain of D by a finite element calculation [Golovanov 1997], [Ren 1996b]. It must
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of course contain the inductor while not containing a “hole”. In the case of wound inductors of
complex shape, the automatic determination of this sub-domain may be difficult to construct, in
which case the calculation of Hs is performed throughout the domain. Other methods have also
been suggested for solving an electrokinetic problem using a finite element calculation [Kawase et
al 1998], [Le Floch 2002]. By considering a tensor electric conductivity, a density Js, with uniform
distribution in the inductor, can be determined [Dular et al 1996].

Otherwise, there are methods based on tree techniques to directly calculate the current density
Js and its associated source field Hs [Le Menach 1999]. We thus introduce two vector fields such
that:

Js = N i (F.33)

Hs = K i (F.34)

rotK = N (F.35)

with i the current, N defined in the inductor and discretised on W2 and K defined in the
whole domain and discretised on W1. Such fields are obtained by facet and edge tree techniques
respectively. The development of these trees is given in annex G. The geometry of the inductor is
implicitly taken into account by N such that:

N = 1
Sind

.n (F.36)

with Sind the cross-section of the inductor and n its normal. If we consider a domain D
including a wound inductor as shown in Figure F.7, the distribution of N is given by Figure F.8.

inductor

Figure F.7: Example of a wound inductor

It has been shown that the choice of the facet tree used for the calculation of N induced much
lower numerical errors than those due to discretisation [Le Menach 1999], [Le Menach et al 2000].
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Figure F.8: Distribution of N

Using an edge tree technique, an infinite number of fields K can be calculated such that their
curl is equal to N. However, the distribution of the magnetic field does not depend on it. Figures
F.9 and F.10 give two examples of field K on an S surface of the domain as shown in Figure F.7.

Figure F.9: Example 1

Figure F.10: Example 2

F.5.2 Magnetodynamic problem
As in the continuous domain, two formulations can be used to solve this type of problem: the
electrical formulation A − ϕ and the magnetic formulation T − Ω. Formulation A − ϕ will be
solved on the primal mesh and formulation T−Ω on the dual mesh knowing, as mentioned earlier,
that inversion is perfectly possible. In practice, the finite element method leads to solving both
formulations on the primal mesh.
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F.5.2.1 Electrical formulation A - φ

The expression of the magnetic induction and the electric field, expressed as a function of potentials
in the continuous domain, remain valid in the discrete domain. These are written:

Bf = RAa et Ea = −∂Aa

∂t
− Gφn (F.37)

with Aa the flows on the primal edges of A and φn the scalar electric potential values φ at
the primal nodes of Dc. To ensure the uniqueness of Aa, it is necessary to introduce a gauge. A
gauge of type A.W = 0 can be applied very simply if the vector potential A is broken down in the
space of the edge elements. This can be obtained by a tree technique, an edge tree not forming
loops and connecting all the nodes of Dc can be determined.

The set of edges of the tree are no longer considered as degrees of freedom, and the value of
the flow of A on these edges is cancelled out. As a result, the number of degrees of freedom of the
potential A is reduced. The system of equations associated with this formulation is given by the
discretisation of the continuous domain equations. This is written:

R̃Mµ−1

ff RAa + Mσ
aa

(
∂Aa

∂t
+ Gφn

)
= 0 (F.38)

D̃Mσ
aa

(
∂Aa

∂t
+ Gφn

)
= 0 (F.39)

By using the properties of discrete operators, the system becomes:∣∣∣∣∣∣∣
R̃Mµ−1

ff R + Mσ
aa

∂

∂t
Mσ

aaG

GtMσ
aa

∂

∂t
GtMσ

aaG

∣∣∣∣∣∣∣
∣∣∣∣∣ Aa

φn

∣∣∣∣∣ =
∣∣∣∣∣ 0

0

∣∣∣∣∣ (F.40)

The left term representing the stiffness matrix is not symmetric. By using an appropriate time
discretisation method, this matrix can verify this property. The development of symmetrisation
will be given later. The resulting stiffness matrix is not invertible if no gauge is used. To resolve
this system, iterative methods are then used, such as the conjugated gradient method. We show
that with this kind of iterative resolution process, the vector potential A is implicitly gauged, hence
the process is convergent [Kameari, Koganezawa 1997], [Johnson 1987], [Fujiwara et al 1993], [Ren
et al 1990]. The preceding discrete formulation applies generally. Using the incidence matrices
introduced above with the interpolation functions given earlier, we obtain the same formulation
given by the finite element method and method of mean weighted residuals, as shown in annex H.
We thus find here that the use of a dual mesh is implicit in the finite element method.

F.5.2.2 Electrical formulation T - Ω

The discrete expression of the magnetic field and the induced current density is given by:

H̃a = H̃as + T̃a − G̃Ω̃n (F.41)
J̃f = R̃

(
T̃a + H̃as

)
(F.42)

with H̃as and T̃a the respective flows of Hs and T on the dual edges and Ωn the values of the
potential Ω on the dual nodes.

The system of equations associated with this formulation is given by the discretisation of the
continuous domain equations. This is written:

RMσ−1

f̃f
R̃T̃a + ∂

∂t
Mµ

ãa

(
T̃a − G̃Ω̃n

)
= −RMσ−1

f̃f
R̃H̃as − ∂

∂t
Mµ

ãa
H̃as (F.43)
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DMµ

ãa

(
T̃a − G̃Ω̃n

)
= −DMµ

ãa
H̃as (F.44)

By using the properties of discrete operators, the system becomes:

∣∣∣∣∣∣∣
R̃tMσ−1

f̃f
R̃ + ∂

∂t
Mµ

ãa
− ∂

∂t
Mµ

ãa
G̃

G̃tMµ

ãa
−G̃tMµ

ãa
G̃

∣∣∣∣∣∣∣
∣∣∣∣∣∣

T̃a

Ω̃n

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−RMσ−1

f̃f
R̃H̃as − ∂

∂t
Mµ

ãa
H̃as

−G̃tMµ

ãa
H̃as

∣∣∣∣∣∣∣ (F.45)

Only values defined on the dual mesh in the right term (current density Js) appear here, which
is normal since the only field source is defined on the dual mesh.

As with the previous formulation, if the method of mean weighted residuals were applied, the
resulting matrix system would be similar to that given earlier.

F.5.3 Magnetostatic problem
In magnetostatics, the discretisation of the system of equations described above is written in the
form:

R̃H̃a = J̃fs (F.46)

DBf = 0 (F.47)

H̃a = Mµ−1

ff Bf (F.48)

In the case of formulation A, we get:

RtMµ−1

ff RAaa = J̃fs avec Bf = RAa (F.49)
In the right term there is a value linked to the dual mesh. However, we can obtain a system

that involves only values linked to the primal mesh. Thus, the system is written:

RtMµ−1

ff RAaa = Maf Js avec Bf = RAa (F.50)
In the case of formulation Ω, the system to be resolved is written:

G̃Mµ

ãa
G̃Ω̃n = G̃Mµ

ãa
H̃as avec H̃a = H̃as − G̃Ω̃n (F.51)

F.5.4 Electrokinetic problem
In electrokinetics, the system to be solved is given by the discretisation of the equations presented
above.

REa = 0 (F.52)
D̃J̃find = 0 (F.53)

J̃find = Mσ
aaEa (F.54)

In the case of formulation T , the system of equations is written in the form:

R̃Mσ−1

f̃f
R̃T̃a = 0 avec J̃find = R̃T̃a (F.55)

and in the case of formulation φ:

GtMσ
aaGφn = 0 avec Ea = −Gφn (F.56)
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Remark F.5.1 In practice, the right term representing the source vector is not zero since the cur-
rent or voltage sources are applied through the boundary conditions, which we have not considered
here but are higher.

F.6 Time discretisation
In the case of magnetodynamic formulations, in addition to space discretisation, time discretisation
must also be introduced. It can be done using a backward Euler method. The interval of the study
has a duration T , the time discretisation step ∆t and the number of time steps NT with NT = T

∆t .
In the general case, two functions are considered, a source or cause function f (t) and a response
or consequence function u (t) such that:

du (t)
dt

+ au (t) = f (t) (F.57)

By applying a backward Euler method, the previous differential equation becomes:

utn+1 − utn

∆t + autn = ftn (F.58)

with tn = n∆t (n ∈ [1, Nt]) and A a constant.

Following time discretisation by the backward Euler method, the different stiffness matrices
are made symmetric. As an example, formulation A − φ is developed. By multiplying the last
line of the matrix by ∆t, the matrix system becomes:∣∣∣∣∣ RtMµ−1

ff R + Mσ
aa

∆t Mσ
aaG

GtMσ
aa GtMσ

aaG∆t

∣∣∣∣∣
∣∣∣∣ Aa

φn

∣∣∣∣
tn+1

=
∣∣∣∣∣ Mσ

aa

∆t 0
GtMσ

aa 0

∣∣∣∣∣
∣∣∣∣ Aa

φn

∣∣∣∣
tn

(F.59)



Appendix G

Determination of fields of given
curl or divergence

Two fields are considered: X (or Xf ) and Y (or Ya) belonging respectively to W2 (or W2) and
W1 (or W1). Field X has conservative flux and Y is such that its curl is equal to X. We thus
have:

rotY = X RYa = Xf (G.1)

divX = 0 DXf = 0 (G.2)

To obtain fields that verify the previous relations, tree techniques, based on graph theory, can
be used. In this annex, we briefly recall the technique used at L2EP and developed by [Le Menach
1999].

G.1 Edge tree
Vector Xf is known and Ya is sought, and it is must verify the relation G.1. An edge tree is
constructed by joining together a set of edges not forming loops and connecting all mesh nodes.
The degrees of freedom (i.e. the components of Ya) associated with this tree are set to arbitrary
values that may be zero, for example. The other degrees of freedom associated with the co-tree,
i.e. the edges that do not belong to the tree, can then be calculated uniquely by verifying the
following relation on each facet f of the mesh:∫

f

X df =
∮

∂f

Y d∂f (G.3)

We then have for each facet f the sum of the flows of Y along the edges of f which is equal to
the flux of X through f . If (ya)1≤a≤na

and (xf )1≤f≤nf
designate the components of Ya and Xf ,

we thus have:

xf =
na∑

a=1
ya δa (G.4)

with δa = +1 or −1 if a belongs to the boundary of f and 0 if a does not belong to the
boundary of f . We further find the relation G.1.

To illustrate this approach, we take the example of two tetrahedra shown in Figure F.1. We
consider a unit flux X2 entering through facet 2 and a unit flux X7 exiting through facet 7. The
fluxes of the other external facets are set to zero so that Xf has conservative flux. Given the
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facet orientations, X2 is equal to 1 and X7 to -1. To calculate Ya, taking account of the approach
presented previously, an edge tree consisting of edges 1, 2, 3 and 4 is constructed, the degrees
of freedom associated with these edges are set to zero (Y1, Y2, Y3 and Y4). As a result, all that
remains is to calculate the flows of Y along the co-tree formed by edges 5 to 9. For information,
Figures G.1 and G.2 illustrate the tree and co-tree used.

Figure G.1: Tree

Figure G.2: Co-tree

For facet 1, we have:

X1 = Y1 + Y5 − Y2 = 0 then Y5 = 0 (G.5)
For facet 2:

X2 = Y1 + Y6 − Y3 = 1 then Y6 = 1 (G.6)
For facet 3:

X3 = Y2 + Y7 − Y3 = 0 then Y7 = 1 (G.7)
and so on, for all the other facets.
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By this technique, the whole vector Ya can be determined iteratively and very quickly. Note
that this technique is only applicable with a field X of zero divergence.

G.2 Facet tree
Because a facet connects two elements in the same way that an edge connects two nodes, by
analogy, a facet tree can be determined. An element eext representing the exterior of the domain
under study is added to account for the flux exiting the boundary. All facets making up the
domain boundary are then connected to this external element. An example of this facet-element
transposition to edge-node is given in Figure G.3 for the example shown in Figure F.1.

Figure G.3: Facet-element graph

Using the previous graph, a tree (representing a facet co-tree) can be calculated. We can then
set the values of the flux on the facet tree. The other fluxes, through the co-co-tree facets, are
determined by an iterative procedure verifying the relation G.2.

A facet tree can be used to obtain a vector Xf with a given divergence. The method is
illustrated using a 2D example. A zero divergence vector Xf is sought in a sub-domain DX of
the domain under study consisting of 6 elements as shown in Figure G.4. This sub-domain can
represent a wound inductor or solid inductor.

Figure G.4: Example of domain DX

The two edge surfaces of DX are in contact, with boundary conditions B .n = 0.
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As a first step, a facet tree is constructed, which must contain the facets outside of DX and
those in contact with the boundary ΓB , with the exception of one facet to avoid forming loops.
Figure G.5 shows the facet tree and co-tree for the example studied. Figure G.6 shows the edge
tree and co-tree resulting from the transposition of the facet-element relation to edge-node.

facet tree

facet co-tree

Figure G.5: Facet tree and co-tree

facet tree

facet co-tree

Figure G.6: Facet tree and co-tree resulting from transposition of facet-element to edge-node

The two preceding figures show that edge tree is equivalent to the facet co-tree.
In the second stage, a zero flux is imposed on facets outside domain DX to ensure zero diver-

gence, and for our example we thus have:

X2 = X9 = X11 = X17 = 0 (G.8)
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On the other tree facets, the flux is imposed, which is calculated by:

Xf =
∫

Sf

X .nf dSf (G.9)

with Sf the area of facet f and nf its normal. In our case, the facets where we impose flux
are f5, f8, f12, f14 and f16.

In the last step, it remains to calculate the flux of X through the co-tree facets by verifying
the relation G.2. Hence, through element 6, as fluxes X16 and X3 are known, we can deduce flux
X15. Knowing this flux, it is then possible to determine X13 in element 5, etc. The determination
of fluxes on the facet co-tree uses an iterative method.
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Appendix H

Formulation A - φ

In the case of formulation A - φ, the magnetic induction and electric field are expressed as a
function of potentials:

B = rotA et E = −∂A
∂t

− gradφ (H.1)

with A, belonging to W1, the vector magnetic potential defined throughout the domain and
φ, belonging to W0, the scalar electric potential defined in the conductive domain.

Using constitutive relations and replacing B and E by their expressions H.1 in the Maxwell-
Ampère and Maxwell-Faraday equations, we obtain the system of equations to be solved:

rot
(

1
µ

rotA
)

+ σ

(
∂A
∂t

+ gradφ
)

= Js (H.2)

div
(
∂A
∂t

+ gradφ
)

= 0 (H.3)

with Js, belonging to W2, the current density, assumed to be known and uniform in a wound
inductor. To resolve the previous system, the method of mean weighted residuals is used:

∫
D

[
rot

(
1
µ

rotA
)

+ σ

(
∂A
∂t

+ gradφ
)

− Js

]
.u dD = 0 (H.4)∫

D

[
div
(
∂A
∂t

+ gradφ
)]

v dD = 0 (H.5)

with u and v two test functions belonging to W1 and W0 respectively.
In the discrete domain, the potential A is broken down in the space of the edge elements and

φ in the spaces of nodal elements:

A =
na∑

a=1
Aawa et φ =

nn∑
n=1

φnwn (H.6)

where wa is the interpolation function associated with edge a and wn the nodal function
associated with node n. The source current density Js is broken down in the space of the facet
elements:

Js =
nf∑

f=1
Jfswf (H.7)
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By using the interpolation function associated with each potential1 as test functions and re-
placing A, φ and Js with their discrete forms, we obtain:

na∑
a′=1

∫
D

[
1
µ

rotwa.rotwa′Aa′ + σwa
∂wa′Aa′

∂t

]
dD+

nn∑
n=1

∫
D
σwagradwnφn dD =

∫
D

wa

nf∑
f=1

wfJfs dD ∀a ∈ [1, na]
(H.8)

na∑
a=1

∫
D
σgradwn

∂waAa

∂t
dD +

nn∑
n′=1

∫
D
σgradwngradwn′φn′ dD = 0 ∀n ∈ [1, nn] (H.9)

The integrals on boundary Γ are naturally cancelled out by the uniform boundary conditions
imposed on the potentials and fields. At this level of development, it is possible to rewrite the
previous equations using the concept of incidence matrices:

RtMµ−1

ff RAa + Mσ
aa

(
∂Aa

∂t
+ Gφn

)
= Maf Jfs (H.10)

GtMσ
aa

∂Aa

∂t
+ GtMσ

aaGφn = 0 (H.11)

With Mµ−1

ff , Mσ
aa and Maf the mass matrices. If we consider matrix Mσ

aa, we recall that it is
of size na × na of M , for which the coefficients mσ

aa are given by:

mσ
aa =

∫
D
σwawa′ dD avec 1 ≤ a ≤ na et 1 ≤ a′ ≤ na (H.12)

with wa the interpolation function associated with edge a.

1applying the Galerkin method, u = wa and v = wn



Appendix I

Finding the element containing a
point in code_Carmel

The algorithm used in code_Carmel, to find an element that contains a point, is as follows. For a
given point, we traverse all the mesh elements. For a given element, we calculate, face by face, the
signed volume of the tetrahedron formed by three of the nodes of the face and the point sought.
Calculating the normal vector on the face, orientated to the inside of the element, by the vector
product of two of its edges, correctly chosen, having one of the three nodes in common. We then
construct the vector formed by the common node of the face and the point sought. Then we
perform the scalar product of the vector normal to the face and the vector containing the point
sought1 If this result is positive, the point can be inside the element. We repeat this operation on
all faces of the element. If all results are positive 2, the point belongs to the element.

Below is a practical example for a circular coil the find the point (0, 0, -0.18) in the index
elements 227 503 (found) and 198,462 (not found). The face closest to the point sought is made
up of index nodes 36684, 33046 and 36685. The “signed” volume of the tetrahedron formed by
this face and the point is small (4 × 10−8 m3, i.e. one-thousandth of the volume of these elements)
but calculable without errors in precision : this volume changes the sign of the element 198 462 to
227 503. The point belongs to element 227 503 because all “signed” volumes calculated between
this point and each of the faces of this element are of the same sign (negative). This is not the
case for element 198 462. The hypothesis of a possible numerical precision error is invalidated
(6 significant digits on the coordinates of the points only, as displayed in the SMESH module of
SALOME), because we verified that the value of the “signed” volume was only slightly modified
(third digit) and did not in any case change the sign of the volume.
—————————–
Details on finding the explorer point of coordinates: 0.00 0.00 -0.18 in element: 215786 (mesh index : 227503).
—————————–
Node coordinates:
1 . (mesh index: 36684 ): -5.3093636276877597E-002 -6.4094322793553996E-004 -0.23979082802635701
2 . (mesh index: 33046 ) 2.5929286527864698E-003 6.5272437037976194E-002 -0.18818821712945100
3 . (mesh index: 36666 ) 1.7567459136458598E-002 7.7384134953159295E-002 -0.26554294932959399
4 . (mesh index: 36685 ): 8.4864373823978594E-003 -2.6694983467967399E-002 -0.16581176005213899
—————————– —————————–
Calculation of signed volume for face 1 defined by points: 1 2 3
- First orientated edge of the face (P1P2 = nodes 1 to 2): 5.5686564929664069E-002 6.5913380265911731E-002 5.1602610896906015E-002
- Second orientated edge of the face (P1P3 = nodes 1 to 3): 7.0661095413336192E-002 7.8025078181094831E-002 -2.5752121303236980E-002
- Normal vector to the face, oriented inwards of element (P1P2 x P1P3): -5.7237071136938536E-003 5.0803441871928295E-003 -3.1256306971144763E-
004
- Vector defined between node 1 and the point sought (P1P) 5.3093636276877597E-002 6.4094322793553996E-004 5.9790828026357018E-002
- Normal scalar product face and P1P: -3.1932461619598281E-004
—————————– —————————–
Calculation of signed volume for face 2 defined by points: 1 4 2
- First orientated edge of the face (P1P2 = nodes 1 to 2): 6.1580073659275453E-002 -2.6054040240031860E-002 7.3979067974218021E-002
- Second orientated edge of the face (P1P3 = nodes 1 to 3): 5.5686564929664069E-002 6.5913380265911731E-002 5.1602610896906015E-002
- Normal vector to the face, oriented inwards of element (P1P2 x P1P3): -6.2206669399010603E-003 9.4194759213992157E-004 5.5098108154132920E-
003
- Vector defined between node 1 and the point sought (P1P) 5.3093636276877597E-002 6.4094322793553996E-004 5.9790828026357018E-002

1This result corresponds to 6 times the “signed” volume of the tetrahedron thus formed.
2In code_Carmel, this criterion is extended to: if all the results are of the same sign, either all positive or all

negative at the machine accuracy (15 significant digits), the point belongs to the element. Because we find that the
“signed” volumes are more often all negative than all positive while having the independent proof that the point
belongs to the element in question.
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- Normal scalar product face and P1P: -2.3794205431372593E-007
—————————– —————————–
Calculation of signed volume for face 3 defined by points: 1 3 4
- First orientated edge of the face (P1P2 = nodes 1 to 2): 7.0661095413336192E-002 7.8025078181094831E-002 -2.5752121303236980E-002
- Second orientated edge of the face (P1P3 = nodes 1 to 3): 6.1580073659275453E-002 -2.6054040240031860E-002 7.3979067974218021E-002
- Normal vector to the face, oriented inwards of element (P1P2 x P1P3): 5.1012757577521724E-003 -6.8132595074518335E-003 -6.6457970849663371E-
003
- Vector defined between node 1 and the point sought (P1P) 5.3093636276877597E-002 6.4094322793553996E-004 5.9790828026357018E-002
- Normal scalar product face and P1P: -1.3087934351660875E-004
—————————– —————————–
Calculation of signed volume for face 4 defined by points: 2 4 3
- First orientated edge of the face (P1P2 = nodes 1 to 2): 5.8935087296113891E-003 -9.1967420505943587E-002 2.2376457077312006E-002
- Second orientated edge of the face (P1P3 = nodes 1 to 3): 1.4974530483672128E-002 1.2111697915183101E-002 -7.7354732200142995E-002
- Normal vector to the face, oriented inwards of element (P1P2 x P1P3): 6.8430982958427415E-003 7.9096772811908353E-004 1.4485493392644932E-
003
- Vector defined between node 1 and the point sought (P1P) -2.5929286527864698E-003 -6.5272437037976194E-002 8.1882171294510031E-003
- Normal scalar product face and P1P: -5.7511020365228410E-005
—————————–
The explorer point of coordinates: 0.00 0.00 -0.18 corresponds to element: 215786 (mesh index: 227503).
—————————–
Details on finding the explorer point of coordinates: 0.00 0.00 -0.18 in element: 186745 (mesh index : 198462).
—————————–
Node coordinates:
1 . (mesh index: 36684 ) : -5.3093636276877597E-002 -6.4094322793553996E-004 -0.23979082802635701
2 . (mesh index: 33045 ) : -4.2877107273884198E-002 3.3669352879108903E-002 -0.18074067450383599
3 . (mesh index: 33046 ) : 2.5929286527864698E-003 6.5272437037976194E-002 -0.18818821712945100
4 . (mesh index: 36685 ): 8.4864373823978594E-003 -2.6694983467967399E-002 -0.16581176005213899
—————————– —————————–
Calculation of signed volume for face 1 defined by points: 1 2 3
- First orientated edge of the face (P1P2 = nodes 1 to 2): 1.0216529002993399E-002 3.4310296107044447E-0025.9050153522521021E-002
- Second orientated edge of the face (P1P3 = nodes 1 a 3) : 5.5686564929664069E-002 6.5913380265911731E-002 5.1602610896906015E-002
- Normal vector to the face, oriented inwards of element (P1P2 x P1P3): -2.1216943641209516E-003 2.7611006373800748E-003 -1.2372165707489110E-
003
- Vector defined between node 1 and the point sought (P1P) 5.3093636276877597E-002 6.4094322793553996E-004 5.9790828026357018E-002
- Normal scalar product face and P1P: -1.8485296331716895E-004
—————————– —————————–
Calculation of signed volume for face 2 defined by points: 1 4 2
- First orientated edge of the face (P1P2 = nodes 1 to 2): 6.1580073659275453E-002 -2.6054040240031860E-002 7.3979067974218021E-002
- Second orientated edge of the face (P1P3 = nodes 1 to 3): 1.0216529002993399E-002 3.4310296107044447E-002 5.9050153522521021E-002
- Normal vector to the face, oriented inwards of element (P1P2 x P1P3): -4.0767388039744112E-003 -2.8805035099353500E-003 2.3790124193007914E-
003
- Vector defined between node 1 and the point sought (P1P) 5.3093636276877597E-002 6.4094322793553996E-004 5.9790828026357018E-002
- Normal scalar product face and P1P: -7.6052004036806842E-005
—————————– —————————–
Calculation of signed volume for face 3 defined by points: 1 3 4
- First orientated edge of the face (P1P2 = nodes 1 to 2): 5.5686564929664069E-002 6.5913380265911731E-002 5.1602610896906015E-002
- Second orientated edge of the face (P1P3 = nodes 1 to 3): 6.1580073659275453E-002 -2.6054040240031860E-002 7.3979067974218021E-002
- Normal vector to the face, oriented inwards of element (P1P2 x P1P3): 6.2206669399010603E-003 -9.4194759213992157E-004 -5.5098108154132920E-
003
- Vector defined between node 1 and the point sought (P1P) 5.3093636276877597E-002 6.4094322793553996E-004 5.9790828026357018E-002
- Normal scalar product face and P1P: 2.3794205431372593E-007
—————————– —————————–
Calculation of signed volume for face 4 defined by points: 2 4 3
- First orientated edge of the face (P1P2 = nodes 1 to 2): 5.1363544656282054E-002 -6.0364336347076303E-002 1.4928914451697001E-002
- Second orientated edge of the face (P1P3 = nodes 1 to 3): 4.5470035926670670E-002 3.1603084158867291E-002 -7.4475426256150057E-003
- Normal vector to the face, oriented inwards of element (P1P2 x P1P3): -2.2233771805698483E-005 1.0613504646951959E-003 4.3680149668614120E-
003
- Vector defined between node 1 and the point sought (P1P) 4.2877107273884198E-002 -3.3669352879108903E-002 7.4067450383599742E-004
- Normal scalar product face and P1P: -3.3453025824716477E-005



Appendix J

Libraies of linear algebra

J.1 Expression of needs
Given the profusion of offers and positive feedback, the question of whether to use a library or an
external product is now unavoidable.

Why are we looking to use this type of scientific library to replace or complement our in-house
solutions? Because this strategy can pay off immediately by reconciling several objectives:

• Economic objective: less technical, less invasive and much faster developments in the host
code. Especially as these are generally not “core business” developments.

• Performance objective: it would be very difficult to do as well, because these products
capitalise on decades of highly specialised expertise from international teams. They often
combine efficiency, reliability, performance and portability. They allow to address, at a lower
cost, a large scope of application while outsourcing many of the associated contingencies
(problem typology, data representation and control, etc.).

• Sharing objective: we benefit from the feedback of a diverse user community.

• Standardisation objective: we share the risk with other users regarding the durability of the
product over time, but in return we benefit from the visibility/recognition that this provides.
And that’s not counting the “skills pool” aspects for our code development teams.

J.1.1 Management of loss of control
However, this loss of control of this often invisible but important link in the numerical simulation
chain must be managed with foresight. In order to be profitable over time, this strategy must be
accompanied by:

• Maintaining “numerical computing” skills in house to recommend the right product, opti-
mise its use and integrate it into our codes. We also need to plan for regular efforts to
upgrade/maintain/validate/document these functions, even if these are less extensive than
for a purely in-house solution. These peripheral software projects also enable us to maintain
a certain credibility and responsiveness with academic teams.

• If possible, a partnership with the product development team to maintain privileged channels
of expertise (for some of our most pressing problems) and influence these future develop-
ments.

It is for all these reasons that EDF R&D has been engaged for 7 years in a very active partner-
ship with the MUMPS development team. This collaboration allowed for a fruitful exchange of
information (OPEX, bugs, usage tips, expertise) between EDF R&D and the MUMPS team. In
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Efficiency Reliability

Usability Portability

Figure J.1: Why use an external product to replace or complement our in-house solutions?

addition, several features of the product have been corrected or modified to take account of these
exchanges.

Rapid optimisation of uses of MUMPS in code_Carmel, and its intensive use in Code_Aster,
are the direct fruits of this pooling of our in-house resources and the close ties that unite us to the
product team.

Figure J.2: Some “logos” of linear algebra libraries

J.1.2 A wide range of linear algebra libraries
Since the emergence in the 70s/80s of the first public libraries1 and constructors2.

Remark J.1.1 To structure their use more efficiently and offer “black box” solutions to code
teams, macro-libraries have emerged. They bring together a panel of these products to which they
add “house” solutions: Numerical Platon (CEA-DEN), Arcane (CEA-DAM), etc.

More specifically concerning direct methods for solving linear systems, which are the core target
of our study, around thirty packages are available. A distinction is made between “stand-alone”
products and those incorporated into a library, between public and commercial products, between
those dealing with dense problems and others with sparse. Some work only in sequential mode,
others support shared and/or distributed memory parallelism. Finally, some products are general

1EISPACK(1974), LINPACK(1976), BLAS(1978) and then LAPACK(1992)...
2NAG(1971), IMSL/ESSL(IBM 1971), ASL/MathKeisan(NEC), SciLib(Cray), MKL(Intel/Bull), HSL(Harwell),

CASI(ANSYS, ABAQUS...), etc.) and their communities of users, the offer has increased. The tendency is of course
to offer high performance solutions (vector, parallelism with centralised and then distributed memory, multilevel
parallelism via threads) as well as “tool kits” for handling linear algebra algorithms and associated data structures.
To cite a non-exhaustive list: ScaLAPACK(Dongarra & Demmel 1997), SparseKIT(Saad 1988), PETSc(Argonne
1991), HyPre(LL 2000), TRILINOS(Sandia 2000), etc
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(symmetric, non-symmetric, SPD, real/complex, etc.) while others are adapted to a specific
need/scenario.

Yes
Yes
Yes
Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes

No

and

Figure J.3: Extract from Jack Dongarra’s web page on free products implementing a direct method.

A fairly exhaustive list of all these products can be found on the website of one of the founding
fathers of LAPACK/BLAS: Jack Dongarra3. The table below is a redacted version. This Internet
resource also lists packages implementing iterative solvers, preconditioners, modal solvers and
many support products (BLAS, LAPACK, ATLAS, etc.).

Remark J.1.2 A more detailed Internet resource focused on sparse direct solvers is maintained
by another big name in the numerical world: T.A.Davis4, one of the contributors to Matlab.

J.2 Annex: Theoretical supplements
J.2.1 Krylov spaces
The action of the conjugate gradient (CG) can be summarised in one sentence: “It carries out
orthogonal projections5 successive on the Krylov space κi

(
K, r0) := vect

(
r0,K r0, ...K ri−1)

where r0 is the initial residual”.
We thus resolve the linear system (P1) by seeking an approximate solution ui in the refined

sub-space (search space of dimension N):

A = r0 + κi

(
K, r0) (J.1)

while imposing the orthogonal constraint (constraint space of dimension N):

ri := f − K ui ⊥ κi

(
K, r0) (J.2)

This Krylov space has the useful property of facilitating approximation of the solution, at the
end of m iterations, in the form:

3http://www.netlib.org/utk/people/JackDongarra/la-sw.html.
4http://www.cise.ufl.edu/research/sparse/codes/.
5We thus construct a succession of iterations by projection on an approximate sub-space (called the search space)

and perpendicular to another sub-space (called the constraint space). This general framework constitutes what we
call the Petrov-Galerkin conditions. Here these two sub-spaces are confused and equal to a Krylov space.
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K−1 f ≈ um = r0 + Pm−1 (K) f (J.3)
where Pm−1 is a certain matrix polynomial of order m-1. We show that the residuals and

directions of descent generate this space:

vec
(
r0, r1, ..., rm−1) = κm

(
K, r0)

vec
(
d0,d1, ...,dm−1) = κm

(
K, r0) (J.4)

while allowing the approximate solution, um, to minimise the energy of the norm over the
entire refined space A:

∥um∥K < ∥u∥K ∀u ∈ A (J.5)
This joint result illustrates the optimality of CG: unlike descent methods, the minimum energy

is not achieved successively for each descent direction di, but jointly for all descent directions
already obtained.

Remark J.2.1 There are a wide variety of projection methods on Krylov-like spaces, more pro-
saically called “Krylov methods”. To solve linear systems (GC, GMRES, FOM/IOM/DOM, GCR,
ORTHODIR/MIN, etc.) and/or modal problems (Lanczos, Arnoldi, etc.). They differ by the
choice of their constraint space and the preconditioning applied to the initial operator to form
the working operator, knowing that different implementations lead to radically different algorithms
(vector or block version, orthonormalisation tools, etc.).

J.2.2 Orthogonality
As already noted, the descent directions are K orthogonal with respect to each other. In addition,
the choice of the optimal descent parameter (see section 15.2.1 or step (2) of algorithm 15.1)
imposes, step by step, the orthogonalities:

⟨di, rm⟩ = 0 ∀i < m
⟨ri, rm⟩ = 0 (J.6)

We thus note a slight inexactitude in the name “CG”, as the gradients are not conjugate
and the conjugate directions do not only include gradients. But let’s not quibble, the designated
ingredients are there all the same!

After N iterations, two possibilities appear:

• Either the residual is zero rN = 0 ⇒ convergence.

• Or it is orthogonal to the N previous descent directions which constitute a basis of the
finite approximation space RN (as they are linearly independent). Hence the necessity for
rN = 0 ⇒ convergence.

It would seem that CG is a direct method that converges in at most N iterations, at least
this is what we thought before testing it on practical cases! Because what remains true in theory,
in exact arithmetic, is undermined by the finite arithmetic of computers. Progressively, notably
due to rounding errors, the descent directions lose their beautiful conjugation properties and the
minimisation leaves the required space.

In other words, we solve an approximate problem that is no longer quite the wished-for pro-
jection of the initial problem. The (theoretically) direct method reveals its true nature! It is
iterative and thus subject, in practice, to many uncertainties (matrix conditioning, starting point,
stop tests, accuracy of the orthogonality, etc.).

To correct this, when constructing the new descent direction, we can impose a re-orthogonalisation
phase. This widespread practice in modal analysis and domain decomposition can be found in
several variants: total, partial, selective re-orthogonalisation, etc. via a whole range of orthog-
onalisation procedures (GS, GSM, IGSM, Househölder, Givens, etc.). Other palliative solutions
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may also consist in, periodically, explicitly recalculating the residual (step (4) of algorithm 15.1) or
even restarting the algorithm with the last-found approximation as the initial solution. However,
if in the end they do not always win in terms of computation time (they have an additional cost
to be offset), they often increase the robustness of the process.

J.2.3 Convergence
Due to the particular structure of the approximating space (equation J.3) and the minimisation
property on this space of the approximate solution um (see equation J.5), we obtain an estimate
of the convergence rate of the CG:

∥u − ui∥2
K =

(
ωi
)2 ∥u0 − u∥2

K avec ωi := max
1≤i≤N

(
1 − λiPm−1

(
λi
))

(J.7)

where we denote
(
λi,vi

)
the eigenmodes of matrix K and Pm−1 any polynomial of degree m−1

at most. The famous Chebyshev polynomials, through their useful properties of increasing the
polynomial space, improve the readability of this attenuation factor ωi. At the end of i iterations,
the descent is expressed in the form

∥ui − u∥K ≤ 2
(√

η (K) − 1√
η (K) + 1

)2

∥u0 − u∥K (J.8)

It ensures superlinear convergence, lim
i→∞

J(ui+1)−J(u)
J(ui−J(u)) = 0i.e., of the process in a number of

iterations proportional to the square root of the conditioning of the operator.
Thus, to obtain:

∥ui − u∥K

∥u0 − u∥K
≤ ε (petit) (J.9)

requires a number of iterations in the order of

i ≈
√
η (K)
2 ln 2

ε
(J.10)

For example, on the test case of Rubinacci’s cube processed with Code_Carmel v1.7.6, we
have the following number of iterations (depending on the preconditioner used and the precision
ε desired):

Type of preconditioner ε = 10−3 ε = 10−6 ε = 10−9

Number of iterations
in theory according to the formula Reference X2 X3

J.10
Without (LinearSolverType=0) 236 567 965

Crout ILU(0) (LinearSolverType=1) 45 107 179
Relaxed single precision MUMPS

LinearSolverType=3 2 4 6
+ mumps_relax = 10−3

Table J.1: Theoretical and actual convergence of the CG on the test case of Rubinacci’s cube
(Code_Carmel v1.7.6 on a 7-caliber station).

We note that while the number of iterations does not strictly follow the theoretical changes
predicted by the formula, the orders of magnitude are respected. This compliance is further verified
by the low number of iterations, i.e. the preconditioner proves to be effective. For example, the
increases in the number of MUMPS iterations are closer to the expected numbers than those



332 APPENDIX J. LIBRAIES OF LINEAR ALGEBRA

of Crout (and still more so in the case without a preconditioner). This is no doubt due to the
deleterious effect of loss of orthogonality.

Remark J.2.2 In practice, taking advantage of special circumstances, the best starting point
and/or advantageous spectral distribution, CG convergence can be much better than might be ex-
pected (J.10). As Krylov’s methods tend to uncover extreme eigenvalues as a matter of priority,
the “effective conditioning” of the working operator is improved.

J.2.4 Computation and memory costs
As with the Steepest Descent, most of the computation cost (excluding the preconditioner, see
section 15.2.3) of this algorithm lies in step (1), the matrix-vector product. Its complexity is
the order of O (k cN) where c is the average number of non-zero terms per line of K and k the
number of iterations required for convergence. To be much more effective than a simple Cholesky

(of complexity O
(
N3

3

)
) thus requires:

• Taking full account of the sparse character of matrices resulting from finite element discretisa-
tions (storage MORSE, matrix-vector product optimised ad hoc, dedicated data representation
format): c ≪ N .

• Preconditioning the working operator: c ≪ N .

• Optimising all steps, even the most basic ones (steps (3), (4) and (7)), because they will be
repeated many times (calls on optimised BLAS functions, parallelism, etc.).

It has already been pointed out that, for an SPD operator, its theoretical convergence occurs
in at most N iterations and proportionally to the square root of the conditioning (see (J.10). In
practice, for large systems that are poorly conditioned and mostly out of scope, it can be very
slow to appear. In terms of memory usage, only the storage of the working matrix is possibly
required (O (cN)) plus some auxiliary working vectors (O (3N)). In practice, the introduction of
sparse computer storage requires the management of additional integer vectors: for example for
the MORSE storage used in Code_Carmel, vectors of the end-of-row indices and the column indices
of the profile elements. Hence effective memory complexity of O ((c+ 3) N) real and O (cN +N)
whole.

Remark J.2.3 These considerations on memory usage do not take into account the storage prob-
lems of a possible preconditioner and the workspace temporarily occupied for its construction.

Remark J.2.4 The number of non-zero terms seems relatively small in cases processed using
Code_Carmel (Rubinacci’s cube): c ≈ 10. This very sparse character, combined with good matrix
conditioning (η (K ∝) 106), may explain the highly competitive performance of PCG. And this,
even with “defective” preconditioning of the Jacobi or ILU(0) type. In the end, for as long as we
don’t diverge... we accept iterating a lot, because these iterations come at a low cost.

J.3 Annex: Non-linear resolution strategies
J.3.1 Construction of the preconditioner
This occurs through the parameter reacprecond_methodeNL.

In non-linear, we can also take great advantage of pooling, between several tens of iterations of
the non-linear solver (often a Newton algorithm), of the construction of the preconditioner or the
numerical factorisation of the direct solver. The non-linear process that operates on approximate
data may then require more iterations, but in the end, as these are faster, the user often wins!

This strategy is especially beneficial for the most costly combination: PCG + MUMPS pre-
conditioner (LinearSolverType=3). With a strictly positive value of this keyword (e.g. 30), the
preconditioner is recalculated with the last code_Carmel matrix only if:
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• For a given non-linear solver iteration, the PCG conjugate gradient has been through more
than reacprecond_methodeNL iterations. To be consistent, we must verify that parameter
reacprecond_methodeNL is strictly less than nbIterationMax, otherwise this criterion will
never be enabled. A warning notifies the user when this condition is not met.

• That makes at least reacprecond_methodeNL iterations of the non-linear solver without this
re-calculation.

• The residual of the non-linear solver increases rather than decreases.

It also works for other preconditioners (LinearSolverType=1/2, see section 15.2.2.3), but since
they already have a low cost in time, the gains are often modest.

With MUMPS direct solver (LinearSolverType=4), we also pool the most time-consuming
step, the numerical factorisation step (and the analysis phase that precedes it). It is recalculated
with the last code _Carmel matrix only if:

• That makes at least reacprecond_methodeNL iterations of the non-linear solver without this
re-calculation.

• The residual of the non-linear solver increases rather than decreases.
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Appendix K

MUMPS copyright

This copyright must be attached to the theoretical documentation and/or the Code_Carmel user
manual in order to remind the user of the authorship of the product and the conditions of its use.
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Figure K.1: MUMPS COPYRIGHT statement.



Appendix L

Moving from real element to
reference element

L.1 Case of the tetrahedron
The linear tetrahedral element is defined by 4 nodes, 6 edges and 4 facets (see Figure L.1 ).
Approximation functions are considered on the nodes (ni, i = 1, 4) of the element for scalar
unknowns and on the edges (ai, i = 1, 6) for vector unknowns.

geometric transformation

Figure L.1: Linear tetrahedral element and its reference element.

To more easily express the approximation functions, the real geometric element is reduced to
a reference element. This is achieved by bijective transformation of the Oxyz coordinate system
into an Oξηε reference system. Using this transformation allows the real element to be configured
in the reference system.

L.2 Nodal approximation function
With configuration of the real element in the reference coordinate system, the approximation
functions (λ̂i, i = 1, 4) are given in Table L.1:
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Node i Approximation functions λ̂i

1 1 − ξ − η − ε
2 ξ
3 η
4 ε

Table L.1: Nodal approximation functions for a reference element

L.3 Edge approximation functions
For the reference element, the edge approximation functions (ŵk, k = 1, 6) are presented in Table
L.2. An edge k is identified by two nodes i and j:

Edge Nodes Approximation functions ŵk

k i - j ξ η ε
1 1 - 2 1 − η − ε ξ ξ
2 1 - 3 η 1 − ξ − ε η
3 1 - 4 ξ ξ 1 − ξ − η
4 2 - 3 −η ξ 0
5 2 - 4 −ε 0 ξ
6 3 - 4 0 −ε η

Table L.2: Edge approximation functions for a reference element

L.4 Transformation of derivatives
The directional derivatives of a scalar function u defined in the real and reference coordinate
system are connected by the following matrix expression:

gradξηεu = J gradxyzu gradxyzu = J−1 gradξηεu (L.1)
Matrix J is called the Jacobian matrix of the element and is defined as follows:

J = gradλ̂ [x, y, z] =

 −1 1 0 0
−1 0 1 0
−1 0 0 1



x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4

 (L.2)

It can also be shown that the curl of a vector function u in the Oxyz coordinate system is
connected to that defined in the Oξηε coordinate system by:

rotxyzu = 1
detJ JT rotξηεu (L.3)

L.5 Transformation of integrals
The volume integral of a function f (x, y, z) on the real element E is reduced to an integral on the
reference element Ê by the following relation:∫

E

f (x, y, z) dxdydz =
∫

Ê

f (ξ, η, ε) |detJ| dξdηdε (L.4)

with detJ the matrix determinant J.



Appendix M

Add-ins for force and torque
calculation

M.1 Maxwell stress tensor
M.1.1 General case
The discretisation of the Maxwell formula (16.2) for force calculation is obtained by replacing the
surface integral with a finite sum on the “Ne” surface elements. The magnetic field H is given
by its approximation on the elements concerned He

(
he

x, h
e
y, h

e
z

)
and the outgoing normal for each

element is expressed by ne

(
ne

x, n
e
y, n

e
z

)
. By denoting Γ′e the surface of the element, we obtain the

following relations:

F = µ0

Ne∑
e=1

Γ′e
(

(He .ne) He − 1
2 |He|2 ne

)
(M.1)

From this expression we can deduce the components of force FT (FxFyFz):

 Fx

Fy

Fz

 = µ0

Ne∑
e=1

Γ′e

(He
x n

e
x +He

y n
e
y +He

z n
e
z

)  He
x

He
y

He
z

− 1
2
(
He 2

x +He 2
y +He 2

y

)  ne
x

ne
y

ne
z


(M.2)

This equation can be rewritten as:

 Fx

Fy

Fz

 = µ0

Ne∑
e=1

Γ′e

 1
2
(
He 2

x −He 2
y −He 2

z

)
ne

x +He
x H

e
y n

e
y +He

x H
e
z n

e
z

1
2
(
He 2

y −He 2
x −He 2

z

)
ne

y +He
x H

e
y n

e
x +He

y H
e
z n

e
z

1
2
(
He 2

z −He 2
x −He 2

y

)
ne

z +He
x H

e
z n

e
x +He

y H
e
z n

e
y

 (M.3)

By applying to each component of the force, it is possible to reduce it to matrix form. As an
example, we give the calculations to express the component Fx:

Fx = µ0

Ne∑
e=1

Γ′e HeT 1
2

 ne
x 0 0

0 −ne
x 0

0 0 −ne
x

 He + HeT

 0 0 0
ne

y 0 0
ne

z 0 0

 He (M.4)

Finally, we obtain the relation that corresponds to (16.4):

Fx = µ0

Ne∑
e=1

Γ′e HeT 1
2

 ne
x 0 0
ne

y −ne
x 0

ne
z 0 −ne

x

 He = µ0

Ne∑
e=1

Γ′e HeT Mx He (M.5)
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M.1.2 Two-dimensional case

M.2 Virtual work method

M.2.1 Derivative of the magnetic energy (vector potential formulation
The value of the force or torque is obtained by differentiating, depending on the direction of
displacement s, the magnetic energy at constant flux. Discretisation is obtained by a sum on the
deformed elements with the use of the flows of the vector potential ce

a:

Fs = −1
2

Ne∑
e=1

ceT
a ∂sSe

a c
e
a (M.6)

In the reference frame, matrix Se
a is written (see annex L):

Se
a =

∫
D̂e

1
µ0

(
1

det JrotŵT J
)
.

(
JT rotŵ 1

det J

)
|det J| dv̂ (M.7)

with ŵ the edge approximation functions in the reference frame.

By differentiating this matrix with respect to s, we obtain:

∂sS
e
a = sign (detJ)

µ0

∫
D̂e

(
rotŵT∂sJ

)
.
(
JT rotŵ

) 1
detJ dv̂

+ sign (detJ)
µ0

∫
D̂e

(
rotŵT J

)
.
(
∂sJT rotŵ

) 1
detJ dv̂

+ sign (detJ)
µ0

∫
D̂e

(
rotŵT J

)
.
(
JT rotŵ

)
∂s

(
1

detJ

)
dv̂ (M.8)

This expression can also be written:

∂sS
e
a = sign (detJ)

µ0

∫
D̂e

(
rotŵT J

)( 1
detJ J−1 ∂sJ + ∂sJT J−1 1

detJ

)(
JT rotŵ

)
dv̂

+ sign (detJ)
µ0

∫
D̂e

(
rotŵT∂sJ

)
.
(
JT rotŵ

) −1 detJ
(detJ)2 dv̂ (M.9)

The derivative of the determinant of J is easily obtained by taking:

J−1 = 1
det JJ′ (M.10)

with J′ the transposed matrix of cofactors of J.

We can thus write:

det J I = J′ J (M.11)

with I the identity matrix.

By using these relations in expression M.9, we obtain:

∂sS
e
a = sign (detJ)

µ0

∫
D̂e

1
(detJ)2

(
rotŵT J

) (
J′ ∂sJ + ∂sJT J′T − ∂sJ′ JT − J′ ∂sJT

) (
JT rotŵ

)
dv̂

(M.12)
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After some simplifications, we get the final expression (see relation 16.17) of the derivative of
Se

a defined by the approximation of edge w in the real coordinate system and the derivative of the
Jacobian matrix:

∂sS
e
a = sign (detJ)

µ0

∫
D̂e

rotwT
[(
∂sJT

)
J′T − (∂sJ′) J

]
rotw dv̂ (M.13)

M.2.2 Derivative of the magnetic co-energy (scalar potential formula-
tion

In this case, the force or torque is obtained by differentiation of the magnetic co-energy at constant
current. Using the values of the scalar potential at the deformed element level, we obtain the
discrete form for the value of the force following displacement s:

Fs = 1
2

Ne∑
e=1

ΩeT ∂s S
e
Ω Ωe (M.14)

Matrix SΩe is expressed using the nodal approximation functions λ̂ in the reference frame as
follows (see annex L):

Se
Ω =

∫
D̂e

µ0

(
gradλ̂T J−1T

)
.
(

J−1 gradλ̂
)

|det J| dv̂ (M.15)

By introducing the matrix of transposed cofactors J′, differentiation with respect to s of the
previous expression gives:

∂sS
e
Ω = sign (det J) µ0

∫
D̂e

(
gradλ̂T ∂sJ′T

)
.
(

J′ gradλ̂
) 1

det J dv̂

+ sign (det J) µ0

∫
D̂e

(
gradλ̂T J′T

)
.
(
∂sJ′ gradλ̂

) 1
det J dv̂

+ sign (det J) µ0

∫
D̂e

(
gradλ̂T J′T

)
.
(

J′ gradλ̂
)
∂s

1
det J dv̂ (M.16)

We can rewrite this relationship as:

∂sS
e
Ω =

sign (det J) µ0

∫
D̂e

(
gradλ̂T J′T

)
.

(
1

det JJ′−1T
∂sJ′T + ∂sJ′ J′−1 1

det J

)
.
(

J′ gradλ̂
)
dv̂

+ sign (det J) µ0

∫
D̂e

(
gradλ̂T J′T

)
.
(

J′ gradλ̂
) −∂s (det J)

(det J)2 dv̂ (M.17)

By replacing the derivative of the determinant with its matrix expression, we obtain (WARN-
ING ERROR IN THE FORMULA):

∂sS
e
Ω =

sign (det J) µ0

∫
D̂e

(
gradλ̂T J−1T

)
.
(
JT ∂sJ′T + ∂sJ′ J − ∂sJ′ J − J′ ∂sJ

) (
J−1 gradλ̂

)
dv̂

(M.18)

Finally, using the nodal approximation functions λ defined in the real coordinate system, we
return to the following expression (see relation 16.22):
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∂sS
e
Ω = sign (det J) µ0

∫
D̂e

(
gradλ̂T

) (
JT ∂sJ′T − J′ ∂sJ

) (
gradλ̂

)
dv̂ (M.19)

For the two cases presented, the calculation of force or torque depends on the evaluation of
the same bracketed expression in relations M.13 and M.19, in other words:(

JT ∂sJ′T − J′ ∂sJ
)

In Chapter 16 on the calculation of forces and torque, we explained the differentiation of the
Jacobian matrix ∂sJ. In the next section, we will give the procedure for calculating the derivative
of matrix J′.

M.2.3 Calculation of the derivative of matrix J’
The Jacobian matrix is given as a function of the coordinates of the element1, in the Cartesian
coordinate system ((xi, yi, zi) , i = 1, 4), by the following relation:

J = gradλ̂


x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4

 =

 x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1
x4 − x1 y4 − y1 z4 − z1

 (M.20)

By defining vectors ∆x, ∆y and ∆z as follows:

∆x =

 x2 − x1
x3 − x1
x4 − x1

 ∆y =

 y2 − y1
y3 − y1
y4 − y1

 ∆z =

 z2 − z1
z3 − z1
z4 − z1

 (M.21)

We can write matrix J and its derivative ∂sJ in a compact form:

J = |∆x ∆y ∆z| ∂sJ = |∂s∆x ∂s∆y ∂s∆z| (M.22)

Using this notation, matrix J′ = (detJ) J′ and its derivative J′ are written:

J′ = |∆y × ∆z ∆z × ∆x ∆x × ∆y| (M.23)

∂sJ′ = |∂s∆y × ∆z + ∆y × ∂s∆z ∂s∆z × ∆x+ ∆z × ∂s∆x ∂s∆x × ∆y + ∆x × ∂s∆y| (M.24)

From the relation M.24 we can deduce the derivatives in the directions s = (x, y, z):

∂sJ′ =

 |0 ∆z × ∂x∆x ∂x∆x × ∆y| s = x
|∂y∆y × ∆z 0 ∆x × ∂y∆y| s = y
|∆y × ∂z∆z ∂z∆z × ∆x 0| s = z

(M.25)

for the calculation of the torque, we take s = θ, which gives:

∂θJ′ = |∂θ∆y × ∆z ∆z × ∂θ∆x ∂θ∆x × ∆y + ∆x × ∂θ∆y| (M.26)

The value of the derivatives ∂x∆x, ∂y∆y, ∂z∆z, ∂θ∆x and ∂θ∆y defined in the last two
equations, are obtained using Table 16.1.

M.2.4 Two-dimensional case

1case of a tetrahedron



Appendix N

Development using orthogonal
polynomials

N.1 Généralités
Let f(x) : Rm −→ Rn be a regular function (more precisely, we assume that f(x) is C∞[−1, 1])
that can be represented as a linear combination of functional {ψj}j of Rn, as follows:

f(x) ≈
∑

j

ujψj(x) , uj ∈ R (N.1)

Spectral methods are based on this notation by considering as functionals ψj polynomials
orthogonal with respect to the weight function w, in other words, the ψj verify:∫

ψi(x)ψj(x)w(x) = ciδij (N.2)

where ci ∈ R and δij is the Kronecker symbol.
The choice of a family of orthogonal polynomials among all existing ones is an essential issue

in spectral approaches. For example, it is well known that Fourier bases are suitable for the
development of periodic functions. They offer an optimal (exponential) convergence rate when f
and its derivatives are periodic. If f or its derivatives are not periodic then it is more appropriate
to use non-periodic bases such as orthogonal polynomials. More generally, the choice of the
polynomial basis can be justified by the Sturm-Liouville problem. The Sturm-Liouville problem
has the following form:

−∂x(p(x)∂xv) + q(x)v = λw(x)v, ∀x ∈]a, b[ (N.3)

This implies that the eigenvalues λ are real and the associated eigenfunctions {v(x)j}j = 0∞

are orthogonal. More particularly, the vj form a basis of L2
w(a, b) and we can thus represent any

square-integrable function (for the weight function w). In the special case where the interval [a, b]
is equal to [−1, 1], the eigenfunctions of the Sturm-Liouville problem define the Jacobi polynomials
Pα,β

k given by the following recurrence:

P (α,β) = ... (N.4)

The Jacobi polynomials Pα,β thus define a basis of L2
w(−1, 1). Thus any square-integrable

function f can be expanded as:

f(x) =
∞∑

k=0
f̃kP

α,β
k (x) (N.5)
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where the coefficients f̃ are given by (consequence of the orthogonality of the polynomials):

f̃k =

∫
f(x)Pα,β

k (x)dx

∥Pα,β
k (x)∥2

(N.6)

The representation of the derivative of f is a little more delicate because the derivatives of
the Jacobi polynomials are not specific functions of the Sturm-Liouville problem (note that the
problem does not arise with the Fourier basis because the basis of the differentiation operator is the
same as the Fourier basis). In the following, we will look at two families of orthogonal polynomials
which are Legendre polynomials, obtained from Jacobi polynomials by taking α = β = 0, and
Chebyshev polynomials obtained in the case where α = β = −1/2. For these two families of
polynomials, we will present the formulas that allow us to calculate them easily, as well as the
formulas for the polynomial development of derivatives.

N.2 Legendre polynomials
Legendre polynomials are orthogonal with respect to the weight function w = 1. They verify the
following recurrence relation:

Lk+1(x) = x
2k + 1
k + 1 Lk(x) − k

k + 1Lk−1(x), avec L0(x) = 1 et L1(x) = x (N.7)

the squared norm of polynomial Lk(x) is 2
2k+1 . The derivatives of Legendre polynomials verify

the following recurrence:

Lk(x) =
L

(1)
k+1(x)

(2k + 1) −
L

(1)
k−1(x)

(2k + 1) , avec L(1)
0 = 0 et L(1)

−1 = 0 (N.8)

Now, we seek to identify the development coefficients in the Legendre basis of the derivative
of f in the form:

f (1)(x) =
∞∑

k=0
f̃

(1)
k Lk(x) (N.9)

We start by substituting the relation (N.8) in (N.9), and then by considering the derivative of
relation (N.9) we show the following equality:

f̃k =
f̃

(1)
k−1

2k − 1 −
f̃

(1)
k+1

2k + 3 , ∀k ≥ 1 (N.10)

And by recurrence, we have:

f̃
(1)
k = (2k + 1)

(
f̃k+1 +

f̃
(1)
k+2

2k + 5

)
, avec f̃ (1)

N = f̃
(1)
N+1 = 0 (N.11)

If we develop this recurrence, we show the following relationship:

f̃
(1)
k = (2k + 1)

(
f̃k+1 + f̃k+3 + f̃k+5 + ...

)
(N.12)

= (2k + 1) Dt
k · F̃ (N.13)

More generally, we write:

F̃ (1) = DF̃ (N.14)

with F̃ (1) the vector containing the development coefficients of f (1), F̃ the vector containing
the development coefficient of f and D the coupling matrix.
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Example:
We assume that N=5, i.e. that:

f(x) = f̃0L0(x) + f̃1L1(x) + f̃2L2(x) + f̃3L3(x) + f̃4L4(x) + f̃5L5(x)

We seek its derivative in the form:

f(x)(1) = f̃
(1)
0 L0(x) + f̃

(1)
1 L1(x) + f̃

(1)
2 L2(x) + f̃

(1)
3 L3(x) + f̃

(1)
4 L4(x)

Then passing (by matrix D) from coefficients f̃k to coefficients f̃ (1)
k is thus written:

f̃
(1)
0
f̃

(1)
1
f̃

(1)
2
f̃

(1)
3
f̃

(1)
4

 =


0 1 0 1 0 1
0 0 3 0 3 0
0 0 0 5 0 5
0 0 0 0 7 0
0 0 0 0 0 9





f̃0
f̃1
f̃2
f̃3
f̃4
f̃5

 (N.15)

and the reverse (by matrix D̂) (from the coefficients of the derivative to those of f) is written:

f̃0
f̃1
f̃2
f̃3
f̃4
f̃5

 =


0 −1

3 0 0 0
1 0 −1

5 0 0
0 1

3 0 −1
7 0

0 0 1
5 0 −1

9
0 0 0 −1

7 0
0 0 0 0 1

9




f̃

(1)
0
f̃

(1)
1
f̃

(1)
2
f̃

(1)
3
f̃

(1)
4

 (N.16)

We note here that:

DD̂ = I (N.17)

N.3 Chebyshev polynomials
The other family of polynomials studied here is that of Chebyshev. They are obtained from Jacobi
polynomials by considering α = β = −1/2. These polynomials have a direct relationship with the
Fourier transformation as they are given by:

Tk(x) = cos(kcos−1(x)) (N.18)

Chebyshev polynomials can also be obtained by the following recurrence:

Tk+1(x) = 2xTk(x) − Tk−1(x), avec T0 = 1 et T1 = x (N.19)

The derivatives T (1)
k of Chebyshev polynomials verify the following recurrence:

2Tk(x) =
T

(1)
k+1(x)
k + 1 −

T
(1)
k−1(x)
k − 1 (N.20)

The norm L2 of these polynomials is:

∥Tk∥2
w = ck

π

2 où c0 = 2 et ck = 1 si k ≥ 1

The relation between the development coefficients in the Chebyshev polynomial basis of func-
tion f and its derivative f (1) is written:

ckf̃
(1)
k = f̃

(1)
k+2 + 2(k + 1)f̃k+1, ∀k ≥ 0 (N.21)
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In the same way as for Legendre polynomials, by developing the recurrence relation we show
that:

f̃
(1)
k = 2

ck

N∑
p=k+1,p+kimpair

pf̃p (N.22)

D =


0 1 0 1 0 1 . . . . . .
0 0 3 0 3 0 . . . . . .
... . . . 0 5 0 5
... . . .

. . . 0 7 0 7

 (N.23)

Chebyshev polynomials are closely related to Fourier decomposition. When considering the
change in variable x = cos(θ), Chebyshev polynomials are written Tn(x) = cos(nθ). Thus, the
spectral coefficients of the series:

f(x) =
∞∑

n=0
anTn(x)

are identical to those of the series:

f(cos(θ)) =
∞∑

n=0
ancos(nθ)

This observation is highly significant. It indicates that the Chebyshev series for not only peri-
odic functions converges at the same rate as the Fourier series for periodic functions (exponential
convergence).

N.4 Development using the Fourier basis
Any periodic function of period T (of pulse ω = 2π/T ) can be decomposed as the sum of trigono-
metric polynomials Ψn(t) = ejωnt such as:

f(t) =
n=+∞∑
n=−∞

cnΨn(t) (N.24)

As trigonometric polynomials {Ψn(t)}n form an orthonormal basis of C on the interval [0, T ],
hence the Fourier coefficients cn are given by:

cn = ⟨f(t),Ψn(t)⟩ = 1
T

∫ T

0
f(t)Ψn(t) (N.25)

For real functions, Fourier series development is reduced to a development in a trigonometric
series as follows:

f(t) = a0

2 +
∑

n∈N∗

ancos(nwt) + bnsin(nwt) (N.26)

Coefficients an and bn are directly related to coefficients cn by the following relations: a0 = 2c0
an = cn + c−n, ∀n ∈ N∗

bn = j(cn − c−n), ∀n ∈ N∗
(N.27)

Below, we will work with the trigonometric form with which we will associate the Hilbert basis
{1, cos(nwt), sin(nwt)} of L2([0, T ]). In this case, we write:
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f(t) =
2nh∑
k=0

f̃kΨk(t) (N.28)

with Ψk(t) ∈ {1, cos(wt), sin(wt), cos(2wt), sin(2wt), . . .} and f̃k = 2
T

∫ T

0
f(t)Ψk(t)dt

We will now look at the relation between the Fourier series development of f(t) and that of
the derivative of f(t) which we will assume is written in the following form:

f (1)(t) =
2nh∑
k=0

fkΨ(1)
k (t) (N.29)

By term-by-term identification, we show the following relation:
f0 = 0
fk = −[ k+1

2 ]wf̃k+1 Si k est impair
fk = [ k

2 ]wf̃k−1 Si k est pair
(N.30)

By analogy with orthogonal polynomials, we define the differentiation matrix D allowing us
to link the coefficients of f (1)(t) directly to those of f(t). Denoting F the vector containing the
development coefficients in series of f(t) and F those of f (1)(t), we thus write:

F = DF (N.31)

We will also denote D̂ the matrix such that (I is the identity matrix):

DD̂ = I (N.32)

Exemple:
Either f(x) in the form:

f(x) = f̃0 + f̃1cos(ωt) + f̃2sin(ωt) + f̃3cos(2ωt) + f̃4sin(2ωt) + f̃5cos(3ωt) + f̃6sin(3ωt)

so by differentiation we have f(t)(1) which is written:

f (1)(x) = −ωf̃1sin(ωt)+ωf̃2cos(ωt)−2ωf̃3sin(2ωt)+2ωf̃4cos(2ωt)−3ωf̃5sin(3ωt)+3ωf̃6cos(3ωt)

By identification with (N.29), we show that the relation between coefficients fk and f̃k:

f0
f1
f2
f3
f4
f5
f6


=



0 0 0 0 0 0 0
0 0 ω 0 0 0 0
0 −ω 0 0 0 0 0
0 0 0 0 2ω 0 0
0 0 0 −2ω 0 0 0
0 0 0 0 0 0 3ω
0 0 0 0 0 3ω 0





f̃0
f̃1
f̃2
f̃3
f̃4
f̃5
f̃6


(N.33)

In this case, matrix D̂ is written:

D̂ =



0 0 0 0 0 0 0
0 0 1/ω 0 0 0 0
0 −1/ω 0 0 0 0 0
0 0 0 0 1/2ω 0 0
0 0 0 −1/2ω 0 0 0
0 0 0 0 0 0 1/3ω
0 0 0 0 0 1/3ω 0


(N.34)
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Appendix O

Kronecker product

The tensor product of a matrix, denoted ⊗, of size n1 × m1 with a matrix of size n2 × m2 is a
matrix of size n1n2 ×m1m2. Example:

(
a11 a12
a21 a22

)
⊗
(
b11 b12
b21 b22

)
=


a11 ∗

[
b11 b12
b21 b22

]
a12 ∗

[
b11 b12
b21 b22

]

a21 ∗
[
b11 b12
b21 b22

]
a22 ∗

[
b11 b12
b21 b22

]
 (O.1)

The Kronecker product has the following properties:

1− A ⊗ (B + λC) = (A ⊗ B) + λ(A ⊗ C)

2− A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C

3− (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

4− (A ⊗ B)−1 = A−1 ⊗ B−1

5− (A ⊗ B)t = At ⊗ Bt

6− Tr(A ⊗ B) = Tr(A)Tr(B)

7− (A ⊗ B)Y = vec(BCBt) (see [Beddek 2012] for the definition of the operator vec and the
matrix C).
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Appendix P

Hadamard product

The Hadamard product of two matrices, denoted ◦, is written:(
a11 a12
a21 a22

)
◦
(
b11 b12
b21 b22

)
=
(
a11b11 a12b12
a21b21 a22b22

)
(P.1)

The Hadamard product has the following properties:

1− Commutative: A ◦ B = B ◦ A

2− Associative: A ◦ (B ◦ C) = (A ◦ B) ◦ C

3− Distributive on “+”: A ◦ (B + C) = (A ◦ B) + (A ◦ C)

We define the Hadamard product per block by: A1 A2

A3 A4

 ◦

 B1 B2

B3 B4

 =

 A1 · B1 A2 · B2

A3 · B3 A4 · B4

 (P.2)

with · the usual matrix product.
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Appendix Q

Modified Gauss quadrature

Gauss quadrature methods are based on the principle of an approximation of the integral of f(x)
by:

If =
∫ b

a

f(x)w(x)dx ≈
n∑

i=1
wif(xi) (Q.1)

The points xi ∈ [a, b] and weights wi are chosen such that the approximation error En = ∥If ≈∑
wif(xi)∥ is minimal. This notation assumes that the function f(x) can be evaluated at each

point xi. However, for sampled functions or those with singularity, this evaluation may not be
possible. In these cases, the quadrature is modified by taking points x̃i sufficiently close to xi

and where the function f(x) can be evaluated. To reduce the error in this approximation, weights
wi must be re-evaluated such that En is minimised. In practice, to estimate the new weights w̃i,
it is assumed that the initial quadrature method at n points is accurate for polynomials {ϕi} of
order 2n− 1 at most. This results in the resolution of the following minimisation problem (taking
r = 2n− 1):

min



∫
ϕ1(x)w(x)∫
ϕ2(x)w(x)

...∫
ϕr(x)w(x)

−


ϕ1(x̃1) ϕ1(x̃2) . . . ϕ1(x̃n)
ϕ2(x̃1) ϕ2(x̃2) . . . ϕ2(x̃n)

...
...

...
ϕr(x̃1) ϕr(x̃2) . . . ϕr(x̃n)




w̃1
w̃2
...
w̃3


 (Q.2)

Assuming that {ϕi} are the Legendre polynomials (orthonormal with respect to w(x) = 1, and
L1(x) = 1), the minimisation is rewritten as:

min




1
0
...
0

−


L1(x̃1) L1(x̃2) . . . L1(x̃n)
L2(x̃1) L2(x̃2) . . . L2(x̃n)

...
...

...
Lr(x̃1) Lr(x̃2) . . . Lr(x̃n)




w̃1
w̃2
...
w̃n


 (Q.3)

The new quadrature formula is obviously less accurate than the original. Note that there
are more mathematically robust methods for constructing quadrature formulas where quadrature
points are imposed. However, these methods are difficult to implement.
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Index

Symbols
α 26
β 26

A
additional losses 258
anisotropy field 253
anomalous losses 255, 258
antiferromagnetic order 251
ARQS 6, 9
attached elements method 151

B
Barkhausen 256
barycentric coordinate method 265
barycentric coordinates 263, 266
barycentric coordinates method 267, 272
Betti number 65
Biot-Savart 248
Bloch wall 252, 254
blocked step 151, 157
blocked step method 150, 151
boundary 3, 4
boundary conditions 4, 6, 14, 106
branch 57

C
characteristic length 6
circuit equation 56, 194
circuit graph 59
circulation 105
co-tree 91
co-tree matrix 96
coil density 55, 193
Compressed Sparse Row 200
conditioning 226
conductive domain 3, 8, 11
conjugate gradient 202, 205
connectivity table 153
constitutive relations 11
continuity conditions 5
conventional losses 255
Coulomb gauge 43
crossing conditions 13
Crout 213

Curie temperature 251
current 55
current density 5, 98, 99

D
diamagnetic materials 251
dimensional analysis 6
dipole 57
direct linear solver 201
direct methods 216
discrete curl 69
discrete differential operators 303
discrete divergence 70
discrete gradient 69
divergence matrix 92
domain under study 3
dual mesh 70

E
edge 57, 65, 75
edge function 66, 104
edge tree 76, 317
electric charge conservation 5, 7, 8
electric charge density 5
electric field 4
electric induction 4
electric wall 14
electrical anisotropy 11
electrical conductivity 11
electrokinetics 10, 17, 27, 37, 177
electroquasistatic model 7
Euler’s method 123
Euler-Poincaré formula 65
Eulerian description 149
exchange energy 251
exchange integral 251
exploratory point 263, 325

F
facet 65
facet function 67, 105, 140
facet tree 77, 88, 90, 93, 98, 100, 319
factorisation 203
Faraday’s law 32
ferromagnetic materials 3, 12, 251
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ferromagnetic order 251
first magnetisation curve 254
fixed point 163, 169
force 237, 238
Fröhlich’s equation 12
function space 41, 42

G
gauge 20, 21, 23, 75
gauge condition 291
Gauss 142
geometric transformation 264
guideline 88

H
hard materials 251
Harmonic Balance Method 113
hexahedron 134, 146
hole 37
hysteresis losses 255

I
imposed current 27, 29, 33, 34
imposed flux 29, 31, 33, 34
imposed magnetic potential difference 30, 31
imposed magnetomotive force 33, 34
imposed voltage 28, 32, 34
incidence matrices 68, 303
induced current losses 256
inductance 56
inductor 3
inductor current 26
inductor volume 56, 194
integral method 150
integration on a hexahedron 146
integration on a prism 146
integration on a rectangle 143
integration on a tetrahedron 144
integration on a triangle 143
interpolation method 151
iron losses 249
iterative linear solver 201
iterative method 202

J
Jacobi 212
Jacobian matrix 263, 264, 299
Jacobian matrix method 267, 271

K
K 26, 80
Kirchhoff’s voltage law 57
Krylov spaces 329

L
Lagrange operators 151
Lagrangian description 150
large axis 260

linear algebra 327
linear system 199
local flux 245
loop 57
low frequency 6

M
macro-element 150
magnet 3
magnetic anisotropy 12
magnetic co-energy 241
magnetic domain 252
magnetic energy 240
magnetic field 4
magnetic flux 56, 245
magnetic flux density 4
magnetic forces 237
Magnetic losses 255
magnetic material 249
magnetic moment 249
magnetic permeability 12
magnetic polarisation 250
magnetic susceptibility 250, 251
magnetic wall 15
magnetisation 249
magnetocrystalline anisotropy energy 252
magnetodynamics 9, 22, 32, 179, 193
magnetoquasistatic model 8
magnetostatic energy 252
magnetostatics 10, 20, 29, 39, 178
Marrocco 299
Marrocco’s equation 12
mass matrix 98
Maxwell stress tensor 237
Maxwell’s equations 5
Mesh current 57
method of mean weighted residuals 44
minimisation matrix 93
minimisation method 92
mortar 151
motion 149
motion strip 150
MUMPS 214, 221

N
N 26, 80
Newton-Raphson 165, 170
nodal function 65, 104
nodal function method 267, 269
nodal interpolation functions 263
node 65, 103
non-conductive domain 3, 8, 11
non-connectedness 37
non-linearity 299
normal trace 106
number of coils 55
numerotation 177
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O
orbital moment 249
orientation 71
overlapping 151, 293
overlapping method 150, 153
overlapping reference elements 154

P
parallelism 199, 201, 202
paramagnetic materials 251
perfect electrical conductor 15
perfect magnetic conductor 14
permanent magnets 13
pivoting 224
preconditioned conjugate gradient 209
preconditioning 208
prism 131, 269
propagation phenomena 6
pyramid 137

Q
quasistatic state 9
quasistatic states 6

R
rectangle 143
relative permeability 250
renumerotation 219
resistance 56
retarded potential solutions 6
right member 98
rotational field losses 259
rotor 150

S
scalar electric potential 18, 23
scalar function 106
scalar magnetic potential 21, 23
scalar potential 43
singular matrices 229
slipping surface 153
small axis 260
soft materials 251

source current density 55, 193
source magnetic field 19, 21, 22
source scalar potential 18
sources 4
space harmonics 257
spanning tree 59, 60
spatial integration 142
spin 249, 251
stator 150
steepest descent 204
sub-domain 65
surface integrals 46

T
tangential trace 105
tension imposée 33
tensor product 183
test function 44
tetrahedron 128, 144, 266
time discretisation 123
time harmonics 257
torque 238, 239
transport term 150
tree 75
tree of the electrical circuit 59
triangle 143

U
uniform current density 26

V
vector electric potential 19, 23
vector function 104, 105
vector magnetic potential 20, 22
vector potential 43
virtual work 240, 242
voltage source 56
volume element 65
volume function 67, 106

W
Weiss domain 251, 252
wound inductor 3, 55
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